Monoïde (théorie des catégories)La notion de monoïde ou d’objet monoïdal en théorie des catégories généralise la notion algébrique du même nom ainsi que plusieurs autres structures algébriques courantes. Il s'agit formellement d'un objet d'une catégorie monoïdale vérifiant certaines propriétés réminiscentes de celles du monoïde algébrique. Soit une catégorie monoïdale. Un triplet où M est un objet de la catégorie C ; est un morphisme appelé « multiplication » ; est un morphisme appelé « unité » ; est appelé monoïde lorsque les diagrammes suivants commutent : avec l'associativité, l'identité à gauche et l'identité à droite de la catégorie monoïdale.
Produit tensoriel d'algèbresEn mathématique, le produit tensoriel de deux algèbres est une nouvelle algèbre. Soit un anneau commutatif. Soient deux -algèbres (non nécessairement commutatives). Leur structure de -algèbres est donnée par deux morphismes et . On peut les considérer comme des -modules et construire le produit tensoriel . Lorsque et commutent à , c'est-à-dire lorsque pour tout , on a et , on montre qu'il existe une loi de composition interne sur ce produit tensoriel uniquement déterminée par la règle pour tous et .
Center (ring theory)In algebra, the center of a ring R is the subring consisting of the elements x such that xy = yx for all elements y in R. It is a commutative ring and is denoted as ; "Z" stands for the German word Zentrum, meaning "center". If R is a ring, then R is an associative algebra over its center. Conversely, if R is an associative algebra over a commutative subring S, then S is a subring of the center of R, and if S happens to be the center of R, then the algebra R is called a central algebra.
BialgèbreEn mathématiques, une bialgèbre ou bigèbre est un ensemble qui possède à la fois une structure d'algèbre et une structure de coalgèbre, et tel que ces deux structures soient compatibles entre elles. Les algèbres de Hopf sont en particulier des bigèbres. Si est un corps, une bialgèbre est un -espace vectoriel muni de quatre applications linéaires : un produit , une unité , un coproduit , une counité . telles que soit une algèbre et une coalgèbre, et qui vérifie l'une des propriétés équivalentes suivantes : et sont des morphismes d'algèbres.
Change of ringsIn algebra, a change of rings is an operation of changing a coefficient ring to another. Given a ring homomorphism , there are three ways to change the coefficient ring of a module; namely, for a right R-module M and a right S-module N, one can form the induced module, formed by extension of scalars, the coinduced module, formed by co-extension of scalars, and formed by restriction of scalars. They are related as adjoint functors: and This is related to Shapiro's lemma.
BimoduleIn abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.
SubalgebraIn mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear operation. Algebras in universal algebra are far more general: they are a common generalisation of all algebraic structures. "Subalgebra" can refer to either case. A subalgebra of an algebra over a commutative ring or field is a vector subspace which is closed under the multiplication of vectors.
Free product of associative algebrasIn algebra, the free product (coproduct) of a family of associative algebras over a commutative ring R is the associative algebra over R that is, roughly, defined by the generators and the relations of the 's. The free product of two algebras A, B is denoted by A ∗ B. The notion is a ring-theoretic analog of a free product of groups. In the , the free product of two algebras (in that ) is their tensor product. We first define a free product of two algebras. Let A and B be algebras over a commutative ring R.