Système d'unités naturellesUn système d'unités naturelles, noté SUN, est un système d'unités basé uniquement sur des constantes physiques universelles. Par exemple, la charge élémentaire e est une unité naturelle de charge électrique, et la vitesse de la lumière c est une unité naturelle de vitesse. Un système d'unités purement naturel a toutes ses unités définies de cette façon, ce qui implique que la valeur numérique des constantes physiques sélectionnées, exprimées dans ces unités, vaut exactement 1.
Rapport masse sur chargeLe rapport masse sur charge est une quantité physique largement utilisée en électrodynamique des particules chargées, c'est-à-dire en optique électronique et en optique ionique. Elle est utilisée dans les domaines scientifiques de la lithographie, de la microscopie électronique, des tubes à rayons cathodiques, de la physique des accélérateurs de la physique nucléaire de la spectroscopie Auger de la cosmologie et de la spectrométrie de masse.
Constante de RydbergLa constante de Rydberg, nommée en l'honneur du physicien Johannes Rydberg, est une constante physique découverte en mesurant le spectre de l'hydrogène. Son unité est le mètre à la puissance moins un (m). Elle est définie à partir des résultats d'Anders Jonas Ångström et Johann Jakob Balmer. Chaque élément chimique a sa propre constante de Rydberg, qui peut être obtenue à partir de la constante de Rydberg.
Constante physiquevignette|Dépendances des constantes définissant les unités du SI depuis 2019. Ici, a → b signifie que a est utilisé pour définir b. En science, une constante physique est une quantité physique dont la valeur numérique est fixe. Contrairement à une constante mathématique, elle implique directement une grandeur physiquement mesurable. Les valeurs listées ci-dessous sont des valeurs dont on a remarqué qu'elles semblaient constantes et indépendantes de tous paramètres utilisés, et que la théorie suppose donc réellement constantes.
Système d'unités atomiquesLes unités atomiques (ua) forment un système d'unités très utilisé pour simplifier les calculs formels ou numériques en physique quantique, notamment en physique atomique. Elles consistent à poser égales à 1 la constante de Planck réduite , la masse de l'électron au repos , et la constante de la loi de Coulomb multipliée par (où -e est la charge de l'électron). Dans un système d'unités atomiques, on a donc : où est la charge de l'électron.
Constante de structure fineLa est la associée à l'interaction électromagnétique. Elle est sans dimension et son interprétation reste un défi pour la physique moderne. La constante est ainsi désignée pour des raisons historiques par référence à la structure fine. Le physicien allemand Arnold Sommerfeld (-) l'a proposée en . Son symbole conventionnel est . Son expression est : où : est la charge élémentaire, est la constante de Planck réduite, est la célérité de la lumière dans le vide, est la permittivité du vide.
Structure fineEn physique atomique, la structure fine décrit le dédoublement de raies spectrales d'un atome. Détectable par spectroscopie à haute résolution spectrale, la structure fine est un effet d'origine relativiste dont l'expression correcte se déduit à partir de l'équation relativiste pour les particules de spin 1/2 : l'équation de Dirac. Les raies denses observées dans les spectres sont prédites par l'étude de l'énergie d’interaction entre l’électron et le proton sans tenir compte du spin et des effets relativistes de l’électron.
Unité de masse atomique unifiéeLunité de masse atomique unifiée, de symbole « u », est une unité de mesure standard, utilisée pour exprimer la masse des atomes et des molécules. Cette unité n'appartient pas au Système international (SI), mais son usage est accepté avec lui. Depuis le , sa valeur a été totalement définie du fait que la valeur du nombre d'Avogadro a été fixée à exactement . Avant la redéfinition de la mole en 2019, sa valeur était obtenue expérimentalement. Elle était alors définie comme 1/12 de la masse d'un atome du nucléide C (), non lié, au repos et dans son état fondamental.
Magnéton de Bohrvignette|Le moment magnétique d'une boucle de courant . En physique atomique, le magnéton de Bohr-Procopiu ou magnéton de Bohr (électronique) (symbole ), découvert en 1911 par le physicien roumain Ștefan Procopiu est nommé en référence au physicien Niels Bohr. C'est une constante physique qui relie le moment magnétique de l'électron à son moment cinétique (ou angulaire). C'est une notion similaire au magnéton nucléaire valable pour le proton et le neutron.
Mass in special relativityThe word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy).