Résumé
En informatique théorique, les arbres AVL ont été historiquement les premiers arbres binaires de recherche automatiquement équilibrés. Dans un arbre AVL, les hauteurs des deux sous-arbres d'un même nœud diffèrent au plus de un. La recherche, l'insertion et la suppression sont toutes en dans le pire des cas. L'insertion et la suppression nécessitent d'effectuer des rotations. La dénomination « arbre AVL » provient des noms respectifs de ses deux inventeurs, respectivement et , qui l'ont publié en 1962 sous le titre An Algorithm for the Organization of Information. Le facteur d'équilibrage d'un nœud est la différence entre la hauteur de son sous-arbre droit et celle de son sous-arbre gauche. Un nœud dont le facteur d'équilibrage est 1, 0, ou -1 est considéré comme équilibré. Un nœud avec tout autre facteur est considéré comme déséquilibré et requiert un rééquilibrage. Le facteur d'équilibrage est soit calculé à partir des hauteurs respectives des sous-arbres, soit stocké dans chaque nœud de l'arbre (ce qui permet un gain de place, ce facteur pouvant être stocké sur deux bits, mais complexifie les opérations d'insertion et de suppression). Les opérations de base d'un arbre AVL mettent en œuvre généralement les mêmes algorithmes que pour un arbre binaire de recherche, à ceci près qu'il faut ajouter des rotations de rééquilibrage nommées « rotations AVL ». L'insertion d'un nœud dans un arbre AVL se déroule en deux étapes : tout d'abord, on insère le nœud exactement de la même manière que dans un arbre binaire de recherche ; puis on remonte vers la racine depuis le nœud inséré en corrigeant les facteurs d'équilibrage, si la différence de hauteur est ≤ 1 (en valeur absolue), ou en effectuant une rotation simple ou double (= 2 rotations simples connexes), si la différence de hauteur est plus élevée que 1. La hauteur h de l'arbre étant en , et les rotations ayant un coût constant, l'insertion se fait finalement en . Pour chaque insertion, il sera nécessaire de procéder à 0 ou 1 rotation simple ou double.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.