In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p1, and a subsequent momentum is p2, the object has received an impulse J: Momentum is a vector quantity, so impulse is also a vector quantity. Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: so the impulse J delivered by a steady force F acting for time Δt is: The impulse delivered by a varying force is the integral of the force F with respect to time: The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s). Impulse J produced from time t1 to t2 is defined to be where F is the resultant force applied from t1 to t2. From Newton's second law, force is related to momentum p by Therefore, where Δp is the change in linear momentum from time t1 to t2. This is often called the impulse-momentum theorem (analogous to the work-energy theorem). As a result, an impulse may also be regarded as the change in momentum of an object to which a resultant force is applied. The impulse may be expressed in a simpler form when the mass is constant: where F is the resultant force applied, t1 and t2 are times when the impulse begins and ends, respectively, m is the mass of the object, v2 is the final velocity of the object at the end of the time interval, and v1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT−1) as momentum. In the International System of Units, these are kg⋅m/s = N⋅s. In English engineering units, they are slug⋅ft/s = lbf⋅s. The term "impulse" is also used to refer to a fast-acting force or impact. This type of impulse is often idealized so that the change in momentum produced by the force happens with no change in time.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
Séances de cours associées (14)
Transfert continu de masse : Momentum et analyse des systèmes
Couvre le transfert continu de masse, les diagrammes d'impulsion et les systèmes avec une masse changeante.
Transfert continu de masse
Couvre la conservation de l'élan, les systèmes avec une masse changeante, et l'équation de fusée pour le voyage interstellaire.
Collisions : Réactions de fusion et rebondissement
Couvre la physique des collisions, en mettant l'accent sur les réactions de fusion et les phénomènes de rebondissement.
Afficher plus
Publications associées (7)

Effect of bed roughness on tsunami-like waves and induced loads on buildings

Anton Schleiss, Michael Pfister, Davide Wüthrich

Tsunami, impulse-waves and dam-break waves afflict humanity with casualties and damages. An insight into the flow mechanisms of these waves is important to provide safety and reduce reconstruction costs. This experimental study focuses on the effect of bed ...
2019

Measurement of the Splitting Function in $pp$ and Pb-Pb Collisions at $\sqrt{s_{_{\mathrm{NN}}}} =$ 5.02 TeV

Comparing Direct and Indirect Thrust Measurements from Passively Fed and Highly Ionic Electrospray Thrusters

Herbert Shea, Simon Dandavino, Daniel George Courtney

Highly ionic beams of several hundred microampere per squared centimeter have been measured from porous glass ionic liquid electrospray sources fabricated using a conventional mill. The thrust output from three prototype devices, two emitting the ionic liq ...
American Institute of Aeronautics and Astronautics2016
Afficher plus
Personnes associées (2)
Concepts associés (11)
Collision inélastique
Une collision inélastique est une collision au cours de laquelle l'énergie cinétique des corps qui entrent en collision est totalement ou en partie convertie en énergie interne dans au moins un des corps. Ainsi, l'énergie cinétique n'est pas conservée. La non-conservation de l'énergie cinétique peut dans le cas d'un choc de corps macroscopiques être due à une déformation des deux corps qui se heurtent : la déformation d'une boule de pâte à modeler heurtant une boule de pétanque, par exemple, consomme de l'énergie sous forme de travail.
Équation de Tsiolkovski
L'équation de Tsiolkovski est l'équation fondamentale de l'astronautique, reliant l'accroissement de vitesse au cours d'une phase de propulsion d'un astronef doté d'un moteur à réaction au rapport de sa masse initiale à sa masse finale. On la doit à Constantin Tsiolkovski et, indépendamment, à Hermann Oberth. L'équation de Tsiolkovski est considérée comme l'équation fondamentale de l'astronautique. Son éponyme est Constantin Tsiolkovski (-), qui l'a déduite puis publiée en .
Contrainte (mécanique)
vignette|Lignes de tension dans un rapporteur en plastique vu sous une lumière polarisée grâce à la photoélasticité. En mécanique des milieux continus, et en résistance des matériaux en règle générale, la contrainte mécanique (autrefois appelée tension ou « fatigue élastique ») décrit les forces que les particules élémentaires d'un milieu exercent les unes sur les autres par unité de surface. Ce bilan des forces locales est conceptualisé par un tenseur d'ordre deux : le tenseur des contraintes.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.