Brown's representability theoremIn mathematics, Brown's representability theorem in homotopy theory gives necessary and sufficient conditions for a contravariant functor F on the Hotc of pointed connected CW complexes, to the Set, to be a representable functor. More specifically, we are given F: Hotcop → Set, and there are certain obviously necessary conditions for F to be of type Hom(—, C), with C a pointed connected CW-complex that can be deduced from alone. The statement of the substantive part of the theorem is that these necessary conditions are then sufficient.
Fonction constantevignette|Graphique représentant la fonction constante f(x)=2. En mathématiques, une fonction constante est une fonction qui ne prend qu'une seule valeur, indépendamment de sa variable. En physique, une grandeur peut être fonction constante d'une autre lorsque les variations de la seconde ne perturbent pas la première. Une fonction est constante si et seulement si son est réduite à un singleton. Une fonction constante d'une variable réelle est représentée par une droite parallèle à l'axe des abscisses.
DifféotopieEn mathématiques, une difféotopie est une classe d'équivalence pour la relation d’isotopie entre difféomorphismes sur une variété différentielle. Plus explicitement, étant donnés deux difféomorphismes sur une telle variété M, c’est-à-dire deux applications φ, φ : M → M différentiables et bijectives avec des réciproques différentiables, on dit que ces difféomorphismes sont isotopes s’il existe une famille de difféomorphismes φ pour t ∈ ]0, 1[ telle que Φ : (t, x) ↦ φ(x) définisse une application différentiable sur [0, 1] × M.
Théorème de la boule chevelueEn mathématiques, le théorème de la boule chevelue est un résultat de topologie différentielle. Il s'applique à une sphère supportant en chaque point un vecteur, imaginé comme un cheveu, tangent à la surface. Il affirme que la fonction associant à chaque point de la sphère le vecteur admet au moins un point de discontinuité, ce qui revient à dire que la coiffure contient un épi, ou qu'il y a des cheveux nuls, c'est-à-dire de la calvitie. De manière plus rigoureuse, un champ de vecteurs continu sur une sphère de dimension paire s'annule en au moins un point.
Bouquet (mathématiques)In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if X and Y are pointed spaces (i.e. topological spaces with distinguished basepoints and ) the wedge sum of X and Y is the quotient space of the disjoint union of X and Y by the identification where is the equivalence closure of the relation More generally, suppose is a indexed family of pointed spaces with basepoints The wedge sum of the family is given by: where is the equivalence closure of the relation In other words, the wedge sum is the joining of several spaces at a single point.
Path space fibrationIn algebraic topology, the path space fibration over a based space is a fibration of the form where is the path space of X; i.e., equipped with the compact-open topology. is the fiber of over the base point of X; thus it is the loop space of X. The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone.
Injection canoniqueIn mathematics, if is a subset of then the inclusion map (also inclusion function, insertion, or canonical injection) is the function that sends each element of to treated as an element of A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections.