Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Couvre les défis et les opportunités de l'exploration de données, des questions pratiques, des composants d'algorithmes et des applications telles que l'analyse du panier d'achat.
Explore les techniques de résolution d'entités pour identifier et agréger différents profils d'entités à travers des ensembles de données, couvrant les défis et les solutions.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Explique les étapes d'affectation et de mise à jour dans le clustering K-means, la minimisation des fonctions de perte et les effets métriques de distance.
Couvre les bases de l'apprentissage automatique, y compris l'apprentissage supervisé et non supervisé, la régression, la classification et le regroupement.
Couvre les fondamentaux de l'apprentissage automatique avancé, mettant l'accent sur les applications pratiques par des exercices et des projets interactifs.
Explore les modèles thématiques, les modèles de mélange gaussien, la répartition des dirichlets latents et l'inférence variationnelle dans la compréhension des structures latentes à l'intérieur des données.