Concept

Hypothèse de l'univers mathématique

Résumé
En physique et en cosmologie, l'hypothèse mathématique de l'univers (en anglais mathematical universe hypothesis, MUH), également connue comme la struogonie (de structure, en latin : struō), est une théorie du tout proposée par le cosmologue Max Tegmark, dans son livre de 2014 The mathematical universe. la MUH de Tegmark est : Notre réalité physique externe est une structure mathématique. Autrement dit, l'univers physique est non seulement décrit par les mathématiques, mais est mathématiques (en particulier, est une structure mathématique). L'existence mathématique est égale à l'existence physique, et toutes les structures qui existent mathématiquement existent aussi physiquement. Les observateurs, y compris les humains, sont des « sous-structures conscientes d'elles-mêmes ». Dans toute structure mathématique suffisamment complexe pour contenir de telles sous-structures, ils « se percevront subjectivement comme existant dans un monde physiquement 'réel' ». La théorie peut être considérée comme une forme de pythagoricisme ou de platonisme en ce qu'elle propose l'existence d'entités mathématiques ; une forme de monisme mathématique en ce qu'elle nie qu'il n'existe rien d'autre que des objets mathématiques ; et une expression formelle du réalisme structurel ontique. Tegmark affirme que l'hypothèse n'a pas de paramètres libres et n'est pas exclue par observation. Ainsi, elle est préférable à toute autre théorie du tout par le Rasoir d'Ockham. Tegmark renforce la MUH avec une deuxième hypothèse, l'hypothèse de l'univers calculable (abrégé CUH en anglais), énonçant que la structure mathématique qui est notre réalité physique externe est définie par des fonctions calculables. La MUH est liée à la catégorisation de Tegmark des multivers en quatre niveaux. Cette catégorisation postule une hiérarchie imbriquée, avec des mondes correspondant à différents ensembles de conditions initiales (niveau 1), de constantes physiques (niveau 2), de branches quantiques (niveau 3) et d'équations ou de structures mathématiques totalement différentes (niveau 4).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.