vignette|En haut : vue d'artiste d’un trou noir supermassif absorbant la matière environnante. En bas : images supposées d'un trou noir dévorant une étoile dans la galaxie . Photo en avec le télescope Chandra à gauche ; photo optique prise par le VLT de l'ESO à droite.
Un trou noir supermassif (TNSM) est un trou noir dont la masse est de l'ordre d'un million de masses solaires ou plus. Il constitue l’un des quatre types de trous noirs avec les trous noirs primordiaux, les trous noirs stellaires, les trous noirs intermédiaires. Étant les plus massifs, leur masse peut atteindre jusqu'à de masses solaires (ainsi celui de la galaxie ). Les trous noirs supermassifs se trouvent au centre des galaxies massives et c'est un quasi consensus dans la communauté scientifique que chaque grosse galaxie abrite un tel objet. C'est le cas au centre de notre galaxie, la Voie lactée, qui abrite un tel trou noir supermassif, à savoir la source .
Aujourd’hui, de nombreuses observations montrent qu’à peu près toutes les grandes galaxies possèdent un trou noir supermassif en leur centre. C’est, par exemple, le cas de notre propre galaxie, la Voie lactée. L'indice le plus significatif de la présence d’un tel trou noir dans notre galaxie est le mouvement orbital des étoiles les plus proches du centre galactique, dans la région appelée . Le suivi des trajectoires a permis de mesurer directement la masse du trou noir central : de masses solaires. En 2002, des astronomes suivent l’étoile S2 dans Sagittarius A* et montrent qu’elle s’approche jusqu’à du trou noir central.
En , l'instrument d'interférométrie GRAVITY, installé au Très Grand Télescope et développé par l'Institut de planétologie et d'astrophysique de Grenoble, le Laboratoire d'études spatiales et d'instrumentation en astrophysique de Paris et le centre français en aérospatial, observe avec une précision inégalée, dans la banlieue de , le trou noir supermassif distant de qui occupe le centre de la Voie lactée.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
Ce cours décrit de façon simple les processus physiques qui expliquent l'univers dans lequel nous vivons. En couvrant une large gamme de sujets, le but du cours est aussi de donner un aperçu général d
vignette|300x300px| Les amas de galaxies sont les plus grandes structures gravitationnellement liées connues de l'univers. Lénergie de liaison gravitationnelle d'un système est l'énergie minimale qui doit lui être ajoutée pour que le système cesse d'être dans un état lié à la gravitation. Un système gravitationnellement lié a une énergie potentielle gravitationnelle inférieure (c'est-à-dire plus négative) que la somme des énergies de ses parties lorsqu'elles sont complètement séparées - c'est ce qui maintient le système agrégé conformément au .
En astronomie, une galaxie active est une galaxie abritant un noyau actif (plus précisément noyau actif de galaxie, abrégé NAG, ou , abrégé AGN). Ce noyau est une région compacte au centre de la galaxie, dont la luminosité est beaucoup plus intense que la normale dans au moins un domaine du spectre électromagnétique (ondes radio, infrarouge, lumière visible, ultraviolet, rayons X ou rayons gamma), et qui présente des caractéristiques montrant que cette forte luminosité n'est pas d'origine stellaire.
vignette|NGC 1097, vue prise par Hubble. Cette galaxie de Seyfert contient en son centre un trou noir supermassif de 100 millions de masses solaires. vignette|NGC 5793 est une galaxie de Seyfert située à plus de 150 millions d'années-lumière dans la constellation de la Balance. Les galaxies de Seyfert sont des galaxies spirales caractérisées par un noyau extrêmement brillant et compact. D'une brillance de surface très élevée, leur noyau représente l'une des plus grandes sources de rayonnement électromagnétique connues de l'Univers, possiblement liée au trou noir supermassif en leur centre.
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Déplacez-vous dans des quasars de variabilité extrême, explorant des modèles AGN unifiés, des régions de lignes d'émission et des événements changeants.
Upcoming wide-field surveys will discover thousands of new strongly lensed quasars which will be monitored with unprecedented cadence by the Legacy Survey of Space and Time (LSST). Many of these quasars will undergo caustic-crossing events over the 10-yr L ...
Oxford Univ Press2024
,
We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of da ...
Iop Publishing Ltd2024
We investigate the fueling mechanisms of supermassive black holes (SMBHs) by analyzing 10 zoom-in cosmological simulations of massive galaxies, with stellar masses 1011-12 M circle dot and SMBH masses 108.9-9.7 M circle dot at z = 0, featuring various majo ...