Flux qubitIn quantum computing, more specifically in superconducting quantum computing, flux qubits (also known as persistent current qubits) are micrometer sized loops of superconducting metal that is interrupted by a number of Josephson junctions. These devices function as quantum bits. The flux qubit was first proposed by Terry P. Orlando et al. at MIT in 1999 and fabricated shortly thereafter. During fabrication, the Josephson junction parameters are engineered so that a persistent current will flow continuously when an external magnetic flux is applied.
Superconducting quantum computingSuperconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs (quantum processing units, or quantum chips) utilize superconducting architecture.
Effet JosephsonEn physique, l’effet Josephson se manifeste par l'apparition d'un courant entre deux matériaux supraconducteurs séparés par une couche faite d'un matériau isolant ou métallique non supraconducteur. Dans le premier cas, on parle de « jonction Josephson S-I-S » (supraconducteur-isolant-supraconducteur) et dans le second de « jonction S-M-S ». On distingue deux types d'effets Josephson, l'effet Josephson « continu » (D.C. Josephson effect en anglais) et l'effet Josephson « alternatif » (A.C. Josephson effect).
QubitEn informatique quantique, un qubit ou qu-bit (quantum + bit ; prononcé ), parfois écrit qbit, est un système quantique à deux niveaux, qui représente la plus petite unité de stockage d'information quantique. Ces deux niveaux, notés et selon le formalisme de Dirac, représentent chacun un état de base du qubit et en font donc l'analogue quantique du bit. Grâce à la propriété de superposition quantique, un qubit stocke une information qualitativement différente de celle d'un bit.