Potentiel électrochimiqueEn électrochimie, le potentiel électrochimique est une grandeur thermodynamique, en joules par mole, équivalent au potentiel chimique mais tenant compte des espèces électriquement chargées. Il ne faut pas confondre avec le potentiel d'électrode en volts. Cette notion est typiquement utilisée pour les processus chimiques où intervient la diffusion, notamment en biochimie où elle détermine le flux des ions à travers une surface donnée mais également pour la compréhension de la conduction dans les semi-conducteurs.
Activité chimiqueEn chimie physique, et plus particulièrement en thermodynamique, l'activité chimique, ou activité, d'une espèce chimique exprime l'écart entre les propriétés de cette espèce pure ou dans un mélange réel et les propriétés de cette même espèce dans un état standard à la même température. La notion d'activité chimique est surtout employée pour les phases liquide et solide. Elle permet notamment le calcul des équilibres de phases et des équilibres chimiques.
Enthalpie libreL’enthalpie libre, appelée aussi énergie libre de Gibbs ou simplement énergie de Gibbs, est une fonction d'état extensive introduite par Willard Gibbs, et généralement notée G. Le changement d'enthalpie libre correspond au travail maximal qui peut être extrait d'un système fermé à température et pression fixes, hors le travail dû à la variation de volume. L'enthalpie libre est reliée à l'enthalpie par la formule (où désigne la température et l'entropie), à l'énergie libre par la relation (où désigne la pression et le volume) et à l'énergie interne par la relation .
Thermodynamic free energyIn thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system (the others being internal energy, enthalpy, entropy, etc.). The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point.
Loi de RaoultEn physique, et plus particulièrement en thermodynamique, la loi de Raoult énonce que : Dans une solution idéale, à température constante, la pression partielle en phase vapeur d'un constituant est proportionnelle à sa fraction molaire en phase liquide. Cette loi a été établie empiriquement par le physicien français François-Marie Raoult en 1882, elle est dérivée de sa loi de la tonométrie. Elle est utilisée dans de nombreux domaines de la chimie, de la physique et de la météorologie.
Énergie interneL’énergie interne d’un système thermodynamique est l'énergie qu'il renferme. C'est une fonction d'état extensive, associée à ce système. Elle est égale à la somme de l’énergie cinétique de chaque entité élémentaire de masse non nulle et de toutes les énergies potentielles d’interaction des entités élémentaires de ce système. En fait, elle correspond à l'énergie intrinsèque du système, définie à l'échelle microscopique, à l'exclusion de l'énergie cinétique ou potentielle d'interaction du système avec son environnement, à l'échelle macroscopique.
Niveau de FermiLe niveau de Fermi est une caractéristique propre à un système qui traduit la répartition des électrons dans ce système en fonction de la température. La notion de niveau de Fermi est utilisée en physique et en électronique, notamment dans le cadre du développement des composants semi-conducteurs. Concrètement, le niveau de Fermi est une fonction de la température mais il peut être considéré, en première approximation, comme une constante, laquelle équivaudrait alors au niveau de plus haute énergie occupé par les électrons du système à la température de .
Énergie libreEn thermodynamique, l'énergie libre, appelée aussi énergie libre de Helmholtz ou simplement énergie de Helmholtz, est une fonction d'état extensive dont la variation permet d'obtenir le travail utile susceptible d'être fourni par un système thermodynamique fermé, à température constante, au cours d'une transformation réversible. En français on la représente généralement par ; en anglais on l'appelle énergie libre de Helmholtz et on la représente généralement par .
Deuxième principe de la thermodynamiqueLe deuxième principe de la thermodynamique (également connu sous le nom de deuxième loi de la thermodynamique ou principe de Carnot) établit l'irréversibilité des phénomènes physiques, en particulier lors des échanges thermiques. C'est un principe d'évolution qui fut énoncé pour la première fois par Sadi Carnot en 1824. Il a depuis fait l'objet de nombreuses généralisations et formulations successives par Clapeyron (1834), Clausius (1850), Lord Kelvin, Ludwig Boltzmann en 1873 et Max Planck (voir Histoire de la thermodynamique et de la mécanique statistique), tout au long du et au-delà jusqu'à nos jours.
Gaz parfaitLe gaz parfait est un modèle thermodynamique décrivant le comportement des gaz réels à basse pression. Ce modèle a été développé du milieu du au milieu du et formalisé au . Il est fondé sur l'observation expérimentale selon laquelle tous les gaz tendent vers ce comportement à pression suffisamment basse, quelle que soit la nature chimique du gaz, ce qu'exprime la loi d'Avogadro, énoncée en 1811 : la relation entre la pression, le volume et la température est, dans ces conditions, indépendante de la nature du gaz.