Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases des moindres carrés ordinaires (OLS) en économétrie, y compris les relations variables, la détermination des coefficients et linterprétation du modèle.
Explore la théorie de la décomposition de la valeur singulière, les solutions de systèmes linéaires, les moindres carrés et les concepts d'ajustement des données.
Explore les méthodes du noyau pour les surfaces de séparation non linéaires à l'aide de noyaux polynômes et gaussiens dans les algorithmes Perceptron et SVM.
Couvre les prédicteurs de moyenne locaux, y compris les voisins les plus proches K et les estimateurs Nadaraya-Watson, ainsi que la régression linéaire locale et ses applications.
Couvre la théorie et les applications de la décomposition de la valeur singulière en physique computationnelle, y compris la résolution des systèmes linéaires et des ajustements polynomiaux.
Introduit la méthode k-Nearest Neighbors et l'expansion des fonctionnalités pour l'apprentissage non linéaire de la machine par des transformations polynômes.
Explore l'apprentissage de la fonction du noyau en optimisation convexe, en se concentrant sur la prédiction des sorties à l'aide d'un classificateur linéaire et en sélectionnant les fonctions optimales du noyau par validation croisée.