vignette|Microstructure d'origine organique : celle d'un œuf, mise en évidence par une source lumineuse. Le concept de microstructure peut se définir indépendamment des matériaux considérés (métaux, céramiques ou matières plastiques). Schatt et Worch la définissent ainsi : Les zones de la microstructure, appelées cristallites (grains, charges ou zones amorphes) sont généralement de taille microscopique et peuvent être caractérisées, aussi bien qualitativement que quantitativement, au microscope optique. Cette discipline recouvre différents domaines : métallographie pour les métaux, céramographie pour les céramiques et plastographie pour les polymères. Les matériaux monocristallins et amorphes ne présentent aucune microstructure visible au microscope optique. Pour les solides métalliques et des alliages, on distingue la microstructure primaire et la microstructure secondaire, bien que, dans le langage courant, ce terme renvoie le plus souvent à la microstructure secondaire. vignette|Schéma simplifié d'une solidification non-dendritique :(1) formation de sites de cristallisation, (2) croissance épitactique des cristaux, (3) microstructure finale. La microstructure primaire se forme lors du refroidissement d'une substance cristalline en fusion : un exemple spectaculaire en est donné par les figures de Widmanstätten, qui apparaissent sur le fer météorique. À la température de solidification, il se forme des cristaux autour de sites internes distribués aléatoirement dans le mélange pâteux. Ces cristaux croissent tout au long du refroidissement jusqu'à ce que leurs périphéries parviennent au contact. Selon qu'il s'agit du refroidissement d'une substance monophasique ou polyphasique, la cristallisation peut s'accompagner le long des dendrites de phénomènes de ségrégation. Les ségrégations viennent de la différence de température de solidification et de solubilité des différentes substances. Les cristaux isolés, selon les circonstances de la solidification et leur position dans la substance en fusion, présentent des orientations aléatoires et se gênent mutuellement dans leur croissance.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (18)
MSE-236: Metals and alloys
Ce cours constitue une introduction aux principes qui régissent l'élaboration, la microstructure et les propriétés des matériaux métalliques. Trois systèmes principaux d'alliages (Al, Cu, Fe) seront u
MSE-302: Phase transformations
Ce cours est une introduction aux transformations de phases liquide-solide et solide-solide. Il aborde les aspects thermodynamiques et cristallographiques. Il traite principalement des matériaux métal
MSE-311: Corrosion and protection of metals + Laboratory Work
Ce cours d'introduction à la corrosion veut familiariser l'étudiant avec les mécanismes réactionnels de la corrosion, avec les différentes formes de corrosion et avec les principes de la protection co
Afficher plus
Séances de cours associées (49)
Comportement mécanique des matériaux
Explore les grandes déformations, les dislocations, les joints de grains et le comportement des matériaux dans différentes conditions.
Mouvement de dislocation activé thermiquement
Explore les mouvements de dislocation activés thermiquement et les modèles constitutifs basés physiquement dans des matériaux à des vitesses de déformation élevées.
Bases de frittage : Croissance et microstructures des grains à l'état solide
Explore les fondamentaux du frittage en céramique, couvrant les mécanismes de transport des matières, les étapes du frittage et l'évolution de la microstructure.
Afficher plus
Publications associées (175)

Text-to-Microstructure Generation Using Generative Deep Learning

Jamie Paik

Designing novel materials is greatly dependent on understanding the design principles, physical mechanisms, and modeling methods of material microstructures, requiring experienced designers with expertise and several rounds of trial and error. Although rec ...
Wiley-V C H Verlag Gmbh2024

An adaptive phase field approach to 3D internal crack growth in rocks

Alexandra Roma Larisa Kushnir, Tao Xu, Michael Heap

Modeling the 3D internal crack under compression entails complex fracture mechanics (mode I-II-III fracture), resulting in substantial computational costs and challenges in characterizing fracture morphology characterization for Phase Field Method (PFM) si ...
2024

Multimaterial Volumetric Printing of Silica-Based Glasses

Christophe Moser, Paul Delrot, Jorge Andres Madrid Wolff, Damien Claude-Marie Loterie, Antoine Vincent Boniface, Roberto Arturo Emma

Silicate glasses have played a major role as structural and functional materials in human civilization since ancient Egypt. Despite their widespread use and importance in modern society, silica glasses with complex geometries are only fabricated in automat ...
Hoboken2024
Afficher plus
Concepts associés (6)
Ténacité
La ténacité est la capacité d'un matériau à résister à la propagation d'une fissure. On peut aussi définir la ténacité comme étant la quantité d'énergie qu'un matériau peut absorber avant de rompre, mais il s'agit d'une définition anglophone. En anglais, on fait la différence entre « toughness », l'énergie de déformation à rupture par unité de volume (, ce qui correspond aussi à des pascals) et « », la ténacité au sens de résistance à la propagation de fissure.
Dureté (matériau)
La dureté d'un matériau est définie comme la résistance mécanique qu'un matériau oppose à la pénétration. Pour mesurer la dureté d'un matériau, un pénétrateur de faible déformabilité (cône ou sphère en diamant, carbure de tungstène lié au cobalt ou acier extra-dur) est enfoncé à la surface du matériau à tester avec une force connue pendant un temps donné. Plus l'empreinte laissée est petite, plus le matériau est dur. La dureté se mesure sur différentes échelles selon le type de matériau considéré.
Matériau composite
vignette|Multicouche, un exemple de matériau composite. Un matériau composite est un assemblage ou un mélange hétérogène d'au moins deux composants, non miscibles mais ayant une forte capacité d'interpénétration et d'adhésion, dont les propriétés mécaniques se complètent. Le nouveau matériau ainsi constitué possède des propriétés avantageuses que les composants seuls ne possèdent pas. Bien que le terme composite soit moderne, de tels matériaux ont été inventés et abondamment utilisés bien avant l'Antiquité, comme les torchis pour la construction de bâtiments.
Afficher plus
MOOCs associés (5)
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.