La génétique des populations (GDP) est l'étude de la distribution et des changements de la fréquence des versions d'un gène (allèles) dans les populations d'êtres vivants, sous l'influence des « pressions évolutives » (sélection naturelle, dérive génétique, recombinaison, mutation, et migration). Les changements de fréquence des allèles sont un aspect majeur de l'évolution, la fixation de certains allèles conduit à une modification génétique de la population, et l'accumulation de tels changements dans différentes populations peut conduire au processus de spéciation.
Discipline initiée dans les années 1920 à 1940 par Ronald Fisher, J. B. S. Haldane et Sewall Wright, la génétique des populations est une application des principes fondamentaux de la génétique mendélienne à l'échelle des populations. Cette application a permis de faire la synthèse entre la génétique mendélienne et la théorie de l'évolution, donnant ainsi naissance au néo-darwinisme (théorie synthétique de l'évolution) et à la génétique quantitative.
La génétique des populations a des applications en épidémiologie où elle permet de comprendre la transmission des maladies génétiques, mais aussi en agronomie, où des programmes de sélection modifient le patrimoine génétique de certains organismes pour créer des races ou variétés plus performantes, ou plus résistantes à des maladies. Elle permet également de comprendre les mécanismes de conservation et de disparition des populations et des espèces (Génétique de la conservation). C'est une discipline des sciences de la vie faisant un fort usage d'outils mathématiques.
Les êtres humains, comme tous les êtres vivants, possèdent de l'ADN. L'étude de l'ADN dans une population et sa comparaison avec l'ADN dans d'autres populations sont la base de la génétique des populations.
Nous possédons d'une part 22 paires de chromosomes dits homologues (ou autosomes) et deux chromosomes dits sexuels (ou gonosomes), et d'autre part de l'ADN dit « mitochondrial » (ADN-mt ou mt-DNA en anglais) qui n'est pas à proprement parler un chromosome.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
The goal of this course is to learn to analyze a scientific paper critically, asking whether the data presented support the conclusions that are drawn. The analysis is presented in the form of a summa
This course examines growth from various angles: economic growth, growth in the use of resources, need for growth, limits to growth, sustainable growth, and, if time permits, population growth and gro
Understand and use the results and methods of population genetics, population dynamics, network theory, and reaction network dynamics to analyze and predict the behavior of living systems
Sir Ronald Aylmer Fisher est un biologiste et statisticien britannique, né à East Finchley le et mort le . Richard Dawkins le considère comme et Anders Hald comme l'homme qui a – . Pour Bradley Efron, il est le statisticien le plus important du . Dans le domaine de la statistique, il introduit de nombreux concepts-clés tels que le maximum de vraisemblance, l'information de Fisher et l'analyse de la variance, les plans d'expériences ou encore la notion de statistique exhaustive.
L'évolution moléculaire ou évolution du génome correspond à l'ensemble des modifications d ́un génome au cours de générations successives au sein d'une population. C'est le moteur de l'évolution des espèces. L ́étude de l ́évolution moléculaire des génomes tente d'expliquer les changements biologiques au niveau moléculaire et cellulaire. Ceci met en jeu plusieurs disciplines telles que la biologie moléculaire, la génétique, la génomique et la bio-informatique.
La , aussi appelée « théorie de la mutation et de la dérive aléatoire », est une théorie de l'évolution moléculaire selon laquelle la plupart des mutations sont neutres et ont une influence négligeable sur la valeur sélective. Elle explique la diversité génétique par la dérive génétique principalement, et ne donne qu'un rôle ponctuel à la sélection naturelle, sans contester cependant la prépondérance de celle-ci du point de vue de l'évolution morphologique.
Background: Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations ...
BMC2024
,
Mutations to gene regulatory networks can be maladaptive or a source of evolutionary novelty. Epistasis con-founds our understanding of how mutations affect the expression patterns of gene regulatory networks, a chal-lenge exacerbated by the dependence of ...
AMER ASSOC ADVANCEMENT SCIENCE2023
,
Owing to stochastic fluctuations arising from finite population size, known as genetic drift, the ability of a population to explore a rugged fitness landscape depends on its size. In the weak mutation regime, while the mean steady-state fitness increases ...