Résumé
Sir Ronald Aylmer Fisher est un biologiste et statisticien britannique, né à East Finchley le et mort le . Richard Dawkins le considère comme et Anders Hald comme l'homme qui a – . Pour Bradley Efron, il est le statisticien le plus important du . Dans le domaine de la statistique, il introduit de nombreux concepts-clés tels que le maximum de vraisemblance, l'information de Fisher et l'analyse de la variance, les plans d'expériences ou encore la notion de statistique exhaustive. En génétique, sa théorie dite de l'emballement fisherien permet d'expliquer la présence de traits n'augmentant pas de manière évidente les chances de survie ou succès de l'organisme. Bien qu'il y ait une convergence entre l'information de Fisher et l'information de Shannon, rien n'indique que Claude Shannon ait utilisé les résultats de Fisher pour élaborer sa théorie. Il est également un des fondateurs de la génétique moderne et un grand continuateur de Darwin, en particulier grâce à son utilisation des méthodes statistiques, incontournables dans la génétique des populations. Il contribue ainsi à la formalisation mathématique du principe de sélection naturelle. Ronald Aylmer Fisher naît dans la banlieue de Londres, au sein d'une famille aisée de la classe moyenne. Ses parents adoptent une superstition singulière : tous leurs enfants portent un prénom comprenant un «y», parmi lesquels le plus jeune des sept, Ronald Aylmer. Dès l'âge tendre, Ronald fait preuve d'un talent particulier pour les mathématiques. Alors qu'il n'a que six ans, sa mère commence à lui lire un ouvrage de vulgarisation sur l'astronomie, qui éveille en lui un intérêt qu'il nourrit pendant toute son enfance et son adolescence. Toutefois, lorsqu'il entre à l'école, on lui décèle des problèmes de vue : il souffre d'une myopie extrême et les médecins lui interdisent d'étudier à la lumière électrique artificielle. L'après-midi, des professeurs particuliers lui font la leçon sans crayon ni papier, ce qui lui permet de développer une aptitude exceptionnelle pour résoudre les problèmes mathématiques de tête, en se reposant sur ses intuitions géométriques mais en faisant abstraction des détails .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.