In computer science, an in-place algorithm is an algorithm that operates directly on the input data structure without requiring extra space proportional to the input size. In other words, it modifies the input in place, without creating a separate copy of the data structure. An algorithm which is not in-place is sometimes called not-in-place or out-of-place.
In-place can have slightly different meanings. In its strictest form, the algorithm can only have a constant amount of extra space, counting everything including function calls and pointers. However, this form is very limited as simply having an index to a length n array requires O(log n) bits. More broadly, in-place means that the algorithm does not use extra space for manipulating the input but may require a small though nonconstant extra space for its operation. Usually, this space is O(log n), though sometimes anything in o(n) is allowed. Note that space complexity also has varied choices in whether or not to count the index lengths as part of the space used. Often, the space complexity is given in terms of the number of indices or pointers needed, ignoring their length. In this article, we refer to total space complexity (DSPACE), counting pointer lengths. Therefore, the space requirements here have an extra log n factor compared to an analysis that ignores the length of indices and pointers.
An algorithm may or may not count the output as part of its space usage. Since in-place algorithms usually overwrite their input with output, no additional space is needed. When writing the output to write-only memory or a stream, it may be more appropriate to only consider the working space of the algorithm. In theoretical applications such as log-space reductions, it is more typical to always ignore output space (in these cases it is more essential that the output is write-only).
Given an array of n items, suppose we want an array that holds the same elements in reversed order and to dispose of the original.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En informatique, le tri rapide ou tri pivot (en anglais quicksort) est un algorithme de tri inventé par C.A.R. Hoare en 1961 et fondé sur la méthode de conception diviser pour régner. Il est généralement utilisé sur des tableaux, mais peut aussi être adapté aux listes. Dans le cas des tableaux, c'est un tri en place mais non stable. La complexité moyenne du tri rapide pour n éléments est proportionnelle à n log n, ce qui est optimal pour un tri par comparaison, mais la complexité dans le pire des cas est quadratique.
En informatique, un tas binaire est une structure de données utilisée notamment pour implémenter une car elle permet de retirer l’élément de priorité maximale (resp. minimale) d'un ensemble ou d’insérer un élément dans l'ensemble en temps logarithmique tout en conservant la structure du tas binaire. On peut la représenter par un arbre binaire qui vérifie ces deux contraintes : C'est un arbre binaire complet : tous les niveaux sauf le dernier doivent être totalement remplis et si le dernier ne l'est pas totalement, alors il doit être rempli de gauche à droite.
vignette|Visualisation statique du tri : les étapes vont de gauche à droite. À chaque étape une permutation est faite. La couleur la plus foncée a le plus de valeur et trouve sa place définitive (en bas) en premier. Le tri à bulles ou tri par propagation est un algorithme de tri. Il consiste à comparer répétitivement les éléments consécutifs d'un tableau, et à les permuter lorsqu'ils sont mal triés. Il doit son nom au fait qu'il déplace rapidement les plus grands éléments en fin de tableau, comme des bulles d'air qui remonteraient rapidement à la surface d'un liquide.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
In this paper we provide a novel and simple algorithm, Clairvoyant Multiplicative Weights Updates (CMWU), for convergence to \textit{Coarse Correlated Equilibria} (CCE) in general games. CMWU effectively corresponds to the standard MWU algorithm but where ...
Optimized Schwarz Methods (OSMs) are based on optimized transmission conditions along the interfaces between the subdomains. Optimized transmission conditions are derived at the theoretical level, using techniques developed in the last decades. The hypothe ...
Springer-Verlag2021
Nonconvex minimax problems appear frequently in emerging machine learning applications, such as generative adversarial networks and adversarial learning. Simple algorithms such as the gradient descent ascent (GDA) are the common practice for solving these ...