EE-607: Advanced Methods for Model IdentificationThis course introduces the principles of model identification for non-linear dynamic systems, and provides a set of possible solution methods that are thoroughly characterized in terms of modelling as
EE-512: Applied biomedical signal processingThe goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples
FIN-417: Quantitative risk managementThis course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
FIN-407: Machine learning in financeThis course aims to give an introduction to the application of machine learning to finance, focusing on the problems of portfolio optimization and hedging, as well as textual analysis. A particular fo
MATH-444: Multivariate statisticsMultivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc