Résumé
Resorption of the root of the tooth, or root resorption, is the progressive loss of dentin and cementum by the action of odontoclasts. Root resorption is a normal physiological process that occurs in the exfoliation of the primary dentition. However, pathological root resorption occurs in the permanent or secondary dentition and sometimes in the primary dentition. While resorption of bone is a normal physiological response to stimuli throughout the body, root resorption in permanent dentition and sometimes in the primary dentition is pathological. The root is protected internally (endodontium) by pre-dentin and externally on the root surface by cementum and the periodontal ligament. Chronic stimuli that damage these protective layers expose underlying dentin to the action of osteoclasts. Root resorption most commonly occurs due to inflammation caused by pulp necrosis, trauma, periodontal treatment, orthodontic tooth movement and tooth whitening. Less common causes include pressure from malpositioned ectopic teeth, cysts, and tumors. Calcium metabolism The pathophysiology of root resorption is not completely understood. It is postulated that osteoclasts are the cells responsible for the resorption of the root surface. Osteoclasts can break down bone, cartilage and dentin. Receptive activator of nuclear factor kappa-B ligand (RANKL), also called osteoclast differentiation factor (ODF) and osteoprotegerin ligand (OPGL), is a regulator of osteoclast function. In physiological bone turn over, osteoblasts and stromal cells release RANKL, this acts on macrophages and monocytes which fuse and become osteoclasts. Osteoprotegerin (OPG) is also secreted by osteoclasts and stromal cells; this inhibits RANKL and therefore osteoclast activity. One thought is that the presence of bacteria plays a role. Bacterial presence leads to pulpal or peri-periapical inflammation. These bacteria are not mediators of osteoclast activity but do cause leukocyte chemotaxis.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (9)

Design of Customized Mouthguards with Superior Protection Using Digital-Based Technologies and Impact Tests

Dominique Pioletti, Naser Nasrollahzadeh Mamaghani, Martin Broome

Background In contact sports, an impact on the jaw can generate destructive stress on the tooth-bone system. Mouthguards can be beneficial in reducing the injury risk by changing the dynamics of the trauma. The material properties of mouthguards and their ...
Springer2024

A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses

Stefanos Giannakis

The Fenton reaction was discovered over 120 years ago, yet our understanding of the complete reaction mechanism of the seemingly simple iron and hydrogen peroxide reaction (Fe + H2O2) remains unclear, thus limiting its full potential. In this work, the aim ...
ELSEVIER SCIENCE BV2019

Description of Fornasinius hermes sp. nov. (Coleoptera, Cetoniidae, Goliathini)

Michele De Palma

Fornasinius hermes sp. nov. is described from North-East Uganda; type locality: Mt Morungole, Kidepo valley. The new species is reminiscent of Fornasinius fornasini Bertoloni, 1852 and Fornasinius aureosparsus (Neervoort Van De Poll, 1890), but presents a ...
2017
Afficher plus