Dagger compact categoryIn , a branch of mathematics, dagger compact categories (or dagger compact closed categories) first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations (that is, ). They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply , which describe general topological quantum field theories, for n = 1 and k = 3.
Théorème no-goEn physique théorique, un théorème no-go ou théorème d'impossibilité est un théorème qui énonce que certaines conditions ne sont pas physiquement possibles. Plus spécifiquement, ce terme décrit des résultats de mécanique quantique comme le théorème de Bell ou le théorème de Kochen–Specker qui contraignent les types de variables cachées admissibles qui tentent d'expliquer le caractère apparemment aléatoire de la mécanique quantique comme étant un déterminisme impliquant des états cachés.
Cryptographie quantiqueLa cryptographie quantique consiste à utiliser les propriétés de la physique quantique pour établir des protocoles de cryptographie qui permettent d'atteindre des niveaux de sécurité qui sont prouvés ou conjecturés non atteignables en utilisant uniquement des phénomènes classiques (c'est-à-dire non-quantiques). Un exemple important de cryptographie quantique est la distribution quantique de clés, qui permet de distribuer une clé de chiffrement secrète entre deux interlocuteurs distants, tout en assurant la sécurité de la transmission grâce aux lois de la physique quantique et de la théorie de l'information.
Communication supraluminiqueLa communication supraluminique est un processus hypothétique au cours duquel de l'information serait envoyée à une vitesse supérieure à celle de la lumière dans le vide. Le consensus scientifique actuel rejette la possibilité d'une communication plus rapide que la lumière et cette dernière n'a été démontrée par aucune expérimentation. Elle est considérée impossible car elle impliquerait, d'après les invariances de Lorentz, la possibilité de . Cela engendrerait une panoplie de paradoxes temporels et contredirait la causalité.
No-hiding theoremThe no-hiding theorem states that if information is lost from a system via decoherence, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the linearity and unitarity of quantum mechanics. Thus, information is never lost. This has implications in black hole information paradox and in fact any process that tends to lose information completely.
No-teleportation theoremIn quantum information theory, the no-teleportation theorem states that an arbitrary quantum state cannot be converted into a sequence of classical bits (or even an infinite number of such bits); nor can such bits be used to reconstruct the original state, thus "teleporting" it by merely moving classical bits around. Put another way, it states that the unit of quantum information, the qubit, cannot be exactly, precisely converted into classical information bits.
Quantum networkQuantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a small quantum computer being able to perform quantum logic gates on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.
Quantum operationIn quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment.