Loi de StudentEn théorie des probabilités et en statistique, la loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ. Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne. Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ à k degrés de liberté.
Coefficient de déterminationvignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Puissance statistiqueLa puissance statistique d'un test est en statistique la probabilité de rejeter l'hypothèse nulle (par exemple l'hypothèse selon laquelle les groupes sont identiques au regard d'une variable) sachant que l'hypothèse nulle est incorrecte (en réalité les groupes sont différents). On peut l'exprimer sous la forme 1-β où β est le risque de c'est-à-dire le risque de ne pas démontrer que deux groupes sont différents alors qu'ils le sont dans la réalité.
Test de StudentEn statistique, un test de Student, ou test t, désigne n'importe quel test statistique paramétrique où la statistique de test calculée suit une loi de Student lorsque l’hypothèse nulle est vraie. gauche|vignette|Façade de la brasserie historique Guinness de St. James. vignette|William Sealy Gosset, qui inventa le test t, sous le pseudonyme Student. Le test de Student et la loi de probabilités qui lui correspond ont été publiés en 1908 dans la revue Biometrika par William Gosset.
Statistique descriptiveLa statistique descriptive est la branche des statistiques qui regroupe les nombreuses techniques utilisées pour décrire un ensemble relativement important de données. L'objectif de la statistique descriptive est de décrire, c'est-à-dire de résumer ou représenter, par des statistiques, les données disponibles quand elles sont nombreuses. Toute description d'un phénomène nécessite d'observer ou de connaître certaines choses sur ce phénomène. Les observations disponibles sont toujours constituées d'ensemble d'observations synchrones.
Régression vers la moyenneEn statistique, la régression vers la moyenne décrit le phénomène suivant : si une variable est extrême à sa première mesure, elle va généralement se rapprocher de la moyenne à sa seconde mesure. Si elle est extrême à sa seconde mesure elle va tendre à être proche de la moyenne à sa première mesure. Afin d'éviter des inférences erronées, la régression vers la moyenne doit être considérée à la base de la conception des expériences scientifiques et prise en compte lors de l'interprétation des données.
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Statistical Methods for Research WorkersStatistical Methods for Research Workers is a classic book on statistics, written by the statistician R. A. Fisher. It is considered by some to be one of the 20th century's most influential books on statistical methods, together with his The Design of Experiments (1935). It was originally published in 1925, by Oliver & Boyd (Edinburgh); the final and posthumous 14th edition was published in 1970. According to Denis Conniffe: Ronald A.
Statistiques non paramétriquesLa statistique non paramétrique est un domaine de la statistique qui ne repose pas sur des familles de loi de probabilité paramétriques. Les méthodes non paramétriques pour la régression comprennent les histogrammes, les méthodes d'estimation par noyau, les splines et les décompositions dans des dictionnaires de filtres (par exemple décomposition en ondelettes). Bien que le nom de non paramétriques soit donné à ces méthodes, elles reposent en vérité sur l'estimation de paramètres.
Corrélation de SpearmanEn statistique, la corrélation de Spearman ou rho de Spearman, nommée d'après Charles Spearman (1863-1945) et souvent notée par la lettre grecque (rho) ou est une mesure de dépendance statistique non paramétrique entre deux variables. La corrélation de Spearman est étudiée lorsque deux variables statistiques semblent corrélées sans que la relation entre les deux variables soit de type affine. Elle consiste à trouver un coefficient de corrélation, non pas entre les valeurs prises par les deux variables mais entre les rangs de ces valeurs.