This page discusses a class of topological groups. For the wrapped loop of wire, see Solenoid. In mathematics, a solenoid is a compact connected topological space (i.e. a continuum) that may be obtained as the inverse limit of an inverse system of topological groups and continuous homomorphisms where each is a circle and fi is the map that uniformly wraps the circle for times () around the circle . This construction can be carried out geometrically in the three-dimensional Euclidean space R3. A solenoid is a one-dimensional homogeneous indecomposable continuum that has the structure of a compact topological group. Solenoids were first introduced by Vietoris for the case, and by van Dantzig the case, where is fixed. Such a solenoid arises as a one-dimensional expanding attractor, or Smale–Williams attractor, and forms an important example in the theory of hyperbolic dynamical systems. Each solenoid may be constructed as the intersection of a nested system of embedded solid tori in R3. Fix a sequence of natural numbers {ni}, ni ≥ 2. Let T0 = S1 × D be a solid torus. For each i ≥ 0, choose a solid torus Ti+1 that is wrapped longitudinally ni times inside the solid torus Ti. Then their intersection is homeomorphic to the solenoid constructed as the inverse limit of the system of circles with the maps determined by the sequence {ni}. Here is a variant of this construction isolated by Stephen Smale as an example of an expanding attractor in the theory of smooth dynamical systems. Denote the angular coordinate on the circle S1 by t (it is defined mod 2π) and consider the complex coordinate z on the two-dimensional unit disk D. Let f be the map of the solid torus T = S1 × D into itself given by the explicit formula This map is a smooth embedding of T into itself that preserves the foliation by meridional disks (the constants 1/2 and 1/4 are somewhat arbitrary, but it is essential that 1/4 < 1/2 and 1/4 + 1/2 < 1). If T is imagined as a rubber tube, the map f stretches it in the longitudinal direction, contracts each meridional disk, and wraps the deformed tube twice inside T with twisting, but without self-intersections.