Concept

Groupe topologique

Résumé
En mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Définition et propriété caractéristique Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu. Mesure de Haar Sur tout groupe topologique localement compact, il existe une et une seule mesure de Borel quasi-régulière non nulle (à coefficient multiplicateur près) invariante par les translations à gauche (x ↦ y∗x) : la mesure de Haar. Exemples de base Le cercle S, qui peut être considéré comme le groupe multiplicatif des nombres complexes de module
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement