Résumé
vignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique. Un nombre -adique peut aussi se concevoir comme une suite de chiffres en base , éventuellement infinie à gauche de la virgule (mais toujours finie à droite de la virgule), avec une addition et une multiplication qui se calculent comme pour les nombres décimaux usuels. La principale motivation ayant donné naissance aux corps des nombres -adiques était de pouvoir utiliser les techniques des séries entières dans la théorie des nombres, mais leur utilité dépasse maintenant largement ce cadre. De plus, la valeur absolue -adique sur le corps est une valeur absolue non archimédienne : on obtient sur ce corps une analyse différente de l'analyse usuelle sur les réels, que l'on appelle analyse p-adique. Une construction algébrique de l'ensemble des nombres -adiques est découverte par Kurt Hensel en 1897, en cherchant à résoudre des problèmes de théorie des nombres par des méthodes calquant celles de l'analyse réelle ou complexe. En 1914, József Kürschák développe le concept de valuation, obtenant une construction topologique de ces nombres. En 1916, Alexander Ostrowski montre qu'il n'existe pas d'autre complétion de que et (résultat connu sous le nom de théorème d'Ostrowski). En 1920, Helmut Hasse redécouvre les nombres -adiques, et les utilise pour formuler le principe local-global. Fixons un nombre premier . La valuation -adique d'un entier relatif a non nul (notée ) est l'exposant de p dans la décomposition de a en produit de facteurs premiers (c'est un cas particulier de valuation discrète).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-417: Number theory II.b - selected topics
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
MATH-494: Topics in arithmetic geometry
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Afficher plus
Séances de cours associées (75)
Numéros p-adiques: Achèvement et norme
Explore la définition de Q_p et l'achèvement de Q,1(p) pour former Qp.
Torsion et divisibilité dans la théorie de groupe
Explore la relation entre p-torsion et p-divisibilité dans la théorie de groupe, mettant en évidence les implications de p-divisibilité dans les séquences exactes des groupes abeliens.
Afficher plus
Publications associées (33)
Concepts associés (48)
Limite projective
En mathématiques, dans la formalisation du langage des catégories, la limite projective est une généralisation du produit. Cette notion est duale de celle de limite inductive. Soient un ensemble ordonné, une famille d'ensembles indexée par , et pour chaque couple tel que , une application . On suppose que ces applications vérifient les deux propriétés suivantes : Une telle structure est appelée système projectif d'ensembles.
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Théorème de Bachet-Bézout
En mathématiques, et plus précisément en arithmétique élémentaire, le théorème de Bachet-Bézout ou identité de Bézout est un résultat d'arithmétique élémentaire, qui prouve l'existence de solutions à l'équation diophantienne linéaire : ax + by = pgcd(a, b) d'inconnues x et y entiers relatifs, où a et b sont des coefficients entiers relatifs et où pgcd(a, b) est le plus grand commun diviseur de a et b. Le théorème de Bézout affirme que les entiers a et b sont premiers entre eux si et seulement si l'équation ax + by = 1 admet des solutions.
Afficher plus