Overshoot (signal)In signal processing, control theory, electronics, and mathematics, overshoot is the occurrence of a signal or function exceeding its target. Undershoot is the same phenomenon in the opposite direction. It arises especially in the step response of bandlimited systems such as low-pass filters. It is often followed by ringing, and at times conflated with the latter. Maximum overshoot is defined in Katsuhiko Ogata's Discrete-time control systems as "the maximum peak value of the response curve measured from the desired response of the system.
Ringing artifactsIn signal processing, particularly , ringing artifacts are artifacts that appear as spurious signals near sharp transitions in a signal. Visually, they appear as bands or "ghosts" near edges; audibly, they appear as "echos" near transients, particularly sounds from percussion instruments; most noticeable are the pre-echos. The term "ringing" is because the output signal oscillates at a fading rate around a sharp transition in the input, similar to a bell after being struck.
Phénomène de GibbsEn mathématiques, lors de l'étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d'une discontinuité, lors de l'analyse d'une fonction dérivable par morceaux. Le phénomène fut mis pour la première fois en évidence en 1848 par Henry Wilbraham, mais cette découverte ne connut guère d'écho.
Réponse indicielleEn automatique la réponse indicielle est la réponse d'un système dynamique à une fonction marche de Heaviside communément appelée échelon. Si le système est un système linéaire invariant (SLI) à temps continu ou discret, alors la réponse indicielle est définie par les relations respectives suivantes : Lorsque le système est asymptotiquement stable, la réponse indicielle converge vers une valeur limite (asymptote horizontale) appelée valeur stationnaire ou finale.