The cascode is a two-stage amplifier that consists of a common-emitter stage feeding into a common-base stage.
Compared to a single amplifier stage, this combination may have one or more of the following characteristics: higher input–output isolation, higher input impedance, high output impedance, higher bandwidth.
In modern circuits, the cascode is often constructed from two transistors (BJTs or FETs), with one operating as a common emitter or common source and the other as a common base or common gate.
The cascode improves input–output isolation (reduces reverse transmission), as there is no direct coupling from the output to input. This eliminates the Miller effect and thus contributes to a much higher bandwidth.
The use of a cascode (sometimes verbified to cascoding) is a common technique for improving analog circuit performance, applicable to both vacuum tubes and transistors. The name "cascode" was coined in an article written by Frederick Vinton Hunt and Roger Wayne Hickman in 1939, in a discussion on the application of voltage stabilizers. They proposed a cascade of two triodes (the first one with a common cathode setup, the second one with a common grid) as a replacement for a pentode, and so the name may be assumed to be an abbreviation of "casc(aded triode amplifier having characteristics similar to, but less noisy than, a single pent)ode". Cascode circuits were employed in early television sets for the 'front-end' or tuner because of their low noise and wider bandwidth.
Figure 1 shows an example of a cascode amplifier with a common-source amplifier as the input stage driven by a signal source, Vin. This input stage drives a common-gate amplifier as the output stage, with output signal Vout.
As the lower FET conducts it changes the upper FET's source voltage, and the upper FET conducts due to the changed potential between its gate and source.
The major advantage of this circuit arrangement stems from the placement of the upper field-effect transistor (FET) as the load of the input (lower) FET's output terminal (drain).