In computer science and graph theory, the term color-coding refers to an algorithmic technique which is useful in the discovery of network motifs. For example, it can be used to detect a simple path of length k in a given graph. The traditional color-coding algorithm is probabilistic, but it can be derandomized without much overhead in the running time. Color-coding also applies to the detection of cycles of a given length, and more generally it applies to the subgraph isomorphism problem (an NP-complete problem), where it yields polynomial time algorithms when the subgraph pattern that it is trying to detect has bounded treewidth. The color-coding method was proposed and analyzed in 1994 by Noga Alon, Raphael Yuster, and Uri Zwick. The following results can be obtained through the method of color-coding: For every fixed constant k, if a graph G = (V, E) contains a simple cycle of size k, then such a cycle can be found in: expected time, or worst-case time, where ω is the exponent of matrix multiplication. For every fixed constant k, and every graph G = (V, E) that is in any nontrivial minor-closed graph family (e.g., a planar graph), if G contains a simple cycle of size k, then such cycle can be found in: O(V) expected time, or O(V log V) worst-case time. If a graph G = (V, E) contains a subgraph isomorphic to a bounded treewidth graph which has O(log V) vertices, then such a subgraph can be found in polynomial time. To solve the problem of finding a subgraph in a given graph G = (V, E), where H can be a path, a cycle, or any bounded treewidth graph where , the method of color-coding begins by randomly coloring each vertex of G with colors, and then tries to find a colorful copy of H in colored G. Here, a graph is colorful if every vertex in it is colored with a distinct color. This method works by repeating (1) random coloring a graph and (2) finding colorful copy of the target subgraph, and eventually the target subgraph can be found if the process is repeated a sufficient number of times.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.