In mathematics, a binary relation on a set may, or may not, hold between two given set members.
For example, "is less than" is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
vignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
vignette|Le symbole de l'appartenance. En mathématique ensembliste, l’ est une relation entre un élément et un ensemble, et également par abus de notations une relation entre un objet et une classe. On écrit pour signifier que l'élément appartient à l'ensemble , ou que l'objet appartient à la classe . L'axiome d'extensionnalité donne un rôle important à la relation d'appartenance, car elle permet de caractériser un ensemble par les éléments qui lui appartiennent.
En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels.
Couvre les expressions logiques, les ensembles, les éléments et les relations d'équivalence.
, ,
Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...
Elsevier2024
Problem statement. Cities hold a central role in global efforts towards sustainability, and integrating sustainability concerns into the governance of cities constitutes an increasingly urgent challenge. One avenue holding promise in this respect concerns ...
In this paper we study Weingarten surfaces and explore their potential for fabrication-aware design in freeform architecture. Weingarten surfaces are characterized by a functional relation between their principal curvatures that implicitly defines approxim ...