Concept

Univers (logique)

Résumé
En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels. Cela permet des simplifications (par exemple, la notion de complémentaire d'un ensemble peut être rendue « absolue », en définissant par défaut le complémentaire de A comme l'ensemble des x de U n'appartenant pas à A ; de même, tout comme l'union d'une famille vide d'ensembles est l'ensemble vide, on pourra définir l'intersection d'une famille vide comme étant U tout entier), et se prête bien à toutes les activités usuelles des mathématiciens : l'étude de la topologie de R, par exemple, ne peut se faire dans U = R, mais il suffit pour y parvenir de changer d'univers, en prenant pour U dans ce cas l'ensemble des parties de R. Ce point de vue a été systématisé par N. Bourbaki dans sa description des structures mathématiques. C'est également ce point de vue qui est adopté dans la plupart des modèles de base de la théorie des probabilités : on s'intéresse à un ensemble (appelé univers) sur lequel est défini une mesure, et à tous ses sous-ensembles (mesurables), appelés évènements. D'un point de vue axiomatique, il est possible de parler d'un « univers » en deux sens distincts : d'une part, on peut considérer la classe (propre) de tous les ensembles, ou une restriction de cette dernière aux ensembles jugés intéressants. C'est ainsi par exemple qu'est construit l'univers de von Neumann V des ensembles de la hiérarchie cumulative, ou l'univers L des ensembles constructibles, défini par Gödel.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.