Publications associées (33)

Controlling the crystal structure of succinic acid via microfluidic spray-drying

Esther Amstad, Aysu Ceren Okur

Many properties of materials, including their dissolution kinetics, hardness, and optical appearance, depend on their structure. Unfortunately, it is often difficult to control the structure of low molecular weight organic compounds that have a high propen ...
ROYAL SOC CHEMISTRY2023

NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning

Manuel Cordova

Structure determination of materials is key to understanding their physical properties. While single-crystal X-ray diffraction is the gold standard for structures displaying long-range order, many materials of interest are polycrystalline and/or disordered ...
EPFL2023

Machine-learned interatomic potentials: Recent developments and prospective applications

William Curtin

High-throughput generation of large and consistent ab initio data combined with advanced machine-learning techniques are enabling the creation of interatomic potentials of near ab initio quality. This capability has the potential of dramatically impacting ...
Heidelberg2023

New methods for structure determination and speciation by NMR crystallography

Martins Balodis

NMR crystallography has been around for half a century, but with the advent of NMR crystal structure determination protocols in the last decade it has shown perspectives that were not seen before. Amalgamation of NMR and crystal structure determination has ...
EPFL2022

Physics-enhanced machine learning with symmetry-adapted and long-range representations

Andrea Grisafi

Theoretical and computational approaches to the study of materials and molecules have, over the last few decades, progressed at an exponential rate. Yet, the possibility of producing numerical predictions that are on par with experimental measurements is t ...
EPFL2021

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.