Double capture électroniqueLa double capture électronique est un type de radioactivité de certains isotopes. Pour un nucléide donné de nombre de masse A et de numéro atomique Z, ce mode de radioactivité n'est possible que si la masse du nucléide obtenu (A ; Z-2) est inférieure à celle du nucléide initial. Dans ce type de radioactivité, deux électrons du cortège électronique sont capturés par deux protons du noyau, devenant ainsi deux neutrons. Deux neutrinos sont émis dans cette transformation.
Transmutationvignette|redresse=1.2|Le Soleil est un réacteur à fusion naturel qui transmute les éléments légers en éléments plus lourds grâce à la nucléosynthèse stellaire, une forme de fusion nucléaire. La transmutation de la matière est la transformation d'une substance en une autre. En physique nucléaire, la transmutation (ou mue atomique) est la transformation d'un élément chimique en un autre par une modification de son noyau atomique. Elle est aussi appelée transmutation nucléaire.
Bismuth 209Le bismuth 209, noté Bi, est l'isotope du bismuth dont le nombre de masse est égal à 209 : son noyau atomique compte et avec un spin pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . C'est le seul isotope naturel du bismuth, ainsi que le produit de la désintégration β du : ⟶ + e + .
Vallée de stabilitéLa vallée de stabilité désigne, en physique nucléaire, l'endroit où se situent les isotopes stables, quand on porte en abscisse le numéro atomique et en ordonnée le nombre de neutrons de chaque isotope (carte des nucléides - les deux axes sont parfois inversés sur certaines représentations). Certains isotopes sont stables, d'autres ne le sont pas et donnent, après une émission radioactive, naissance à un autre élément qui peut être lui-même sous la forme d'un isotope stable ou radioactif.
Isotopethumb|upright=1.2|Quelques isotopes de l'oxygène, de l'azote et du carbone. On appelle isotopes (d'un certain élément chimique) les nucléides partageant le même nombre de protons (caractéristique de cet élément), mais ayant un nombre de neutrons différent. Autrement dit, si l'on considère deux nucléides dont les nombres de protons sont Z et Z, et les nombres de neutrons N et N, ces nucléides sont dits isotopes si Z = Z et N ≠ N.
Nucléide cosmogéniqueLes nucléides cosmogéniques (ou isotopes cosmogéniques) sont des isotopes rares créés quand un rayon cosmique de haute énergie interagit avec le noyau d'un atome (réaction de spallation par les rayons cosmiques). Ces isotopes sont en particulier produits dans les matériaux terrestres comme des roches ou le sol, dans l'atmosphère terrestre et dans des corps extraterrestres comme des météorites. La mesure des isotopes cosmogéniques permet aux scientifiques d'avoir une meilleure compréhension de nombreux processus géologiques et astronomiques.
Chaîne de désintégrationvignette|Différents modes de désintégration radioactive : radioactivités α, β et β, capture électronique (ε), émission de neutron (n) et émission de proton (p). N et Z sont le nombre de neutrons et le nombre de protons des noyaux considérés. Une chaîne de désintégration, ou chaîne radioactive, ou série radioactive, ou désintégration en cascade, ou encore filiation radioactive, est une succession de désintégrations d'un radioisotope jusqu'à un élément chimique dont le noyau atomique est stable (par conséquent non radioactif), généralement le plomb (Pb), élément le plus lourd possédant des isotopes stables.
Isotope stablevignette|Table des isotopes par mode de désintégration majoritaire (données du programme Nucleus). Un isotope stable d'un élément chimique est un isotope qui n'a pas de radioactivité décelable. Au , 256 nucléides correspondant à 80 éléments étaient considérés comme stables, bien que le calcul pour un nombre significatif d'entre eux suggère qu'ils devraient connaître certains modes de désintégration. Les éléments 43 et 61 — respectivement le technétium et le prométhium — n'ont aucun isotope stable ; le technétium 99 est présent naturellement à l'état de traces.
Spallation des rayons cosmiquesLa spallation des rayons cosmiques est un mécanisme de nucléosynthèse où la grande énergie cinétique des rayons cosmiques (essentiellement des protons) brise des nucléides croisant leur trajectoire et en forment de nouveaux (généralement de masse atomique plus petite). La présence des éléments légers tels que le lithium (dont un petit pourcentage s'est formé au cours de la nucléosynthèse primordiale), le béryllium et le bore, fut longtemps une énigme pour les astrophysiciens étant donné que la nucléosynthèse primordiale et les réactions nucléaires du cœur des étoiles sont plus propices à les détruire qu'à les synthétiser.
Nombre de neutronsvignette|isotope, poids atomique, nombre de masse, protons, neutrons, carbone 14, éléments Le nombre de neutrons (N) est le terme employé en chimie et en physique pour représenter le nombre de neutrons du noyau d'un atome. Il est égal à la différence entre le nombre de masse A et le numéro atomique Z. N = A - Z À la différence du nombre de masse et du numéro atomique, il n'accompagne généralement pas le symbole chimique. Comme le nombre de masse, il détermine chez un élément chimique l'existence d'isotopes.