Concept

Partie constructible

En géométrie algébrique, la notion de partie constructible généralise les parties ouvertes, fermées et même localement fermées. Les ensembles constructibles ont été introduits par Claude Chevalley, et présentent l'avantage d'être d'une manipulation plus souple. Par exemple l'image d'un constructible par un morphisme de présentation finie est constructible, alors ce n'est pas vrai pour les parties ouvertes ou fermées. Mais surtout, sous des hypothèses assez générales, si est un morphisme de schémas, l'ensemble des points de X ou de Y vérifiant certains types de propriétés est un ensemble constructible (sans être ni ouvert ni fermé en général). Soit X un espace topologique. L'ensemble des parties constructibles de X est le plus petit ensemble de parties de X contenant les ouverts rétrocompacts (c'est-à-dire dont l'intersection avec tout ouvert quasi-compact de X est quasi-compact), stable par intersection finie et par passage au complémentaire. Un espace topologique X est dit noethérien si toute suite décroissante de parties fermées de X est stationnaire. L'espace topologique sous-jacent à un schéma noethérien est noethérien. Dans un espace noethérien, toute partie de X est rétrocompacte. Ainsi toute partie localement fermée est constructible. On se restreint dans la suite aux espaces noethériens. En effet, l'ensemble des parties localement fermées est stable par intersection finie, et le complémentaire d'une partie localement fermée s'écrit comme réunion (disjointe) d'un ouvert et d'un fermé. Donc leurs réunions finies forment un ensemble stable par intersection finie et par passage au complémentaire. Et c'est visiblement le plus petit possible. Il est facile de voir que tout ensemble constructible est une réunion finie disjointe de parties localement fermées (en effet, la réunion de deux localement fermés est aussi la réunion disjointe d'un localement fermé, et de l'intersection d'un localement fermé avec le complémentaire d'un localement fermé, or le complémentaire d'un localement fermé est la réunion disjointe d'un ouvert et d'un fermé).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.