Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Couvre la formation de régression linéaire pour trouver la meilleure ligne pour des points de données donnés, essentielle pour prédire les prix des maisons.
Couvre l'échantillonnage, la validation croisée, la quantification des performances, la détermination optimale du modèle, la détection des surajustements et la sensibilité de classification.
Couvre les défis de classification d'images, les concepts d'apprentissage automatique, la régression linéaire et l'approche voisine la plus proche dans les véhicules autonomes.
Plongez dans les bases de l'apprentissage par renforcement, en discutant des états, des actions, des récompenses, des politiques et des applications de réseaux neuronaux.
Explore les erreurs optimales dans les modèles de grande dimension, en comparant les algorithmes et en faisant la lumière sur l'interaction entre l'architecture du modèle et la performance.
Discute de l'évolution des réseaux de neurones artificiels, des défis de l'apprentissage supervisé et du rôle des comportements innés dans la formation du comportement.