Réseau de neurones de HopfieldLe réseau de neurones d'Hopfield est un modèle de réseau de neurones récurrents à temps discret dont la matrice des connexions est symétrique et nulle sur la diagonale et où la dynamique est asynchrone (un seul neurone est mis à jour à chaque unité de temps). Il a été popularisé par le physicien John Hopfield en 1982. Sa découverte a permis de relancer l'intérêt dans les réseaux de neurones qui s'était essoufflé durant les années 1970 à la suite d'un article de Marvin Minsky et Seymour Papert.
Robotiquethumb|upright=1.5|Nao, un robot humanoïde. thumb|upright=1.5|Des robots industriels au travail dans une usine. La robotique est l'ensemble des techniques permettant la conception et la réalisation de machines automatiques ou de robots. L'ATILF donne la définition suivante du robot : « il effectue, grâce à un système de commande automatique à base de microprocesseur, une tâche précise pour laquelle il a été conçu dans le domaine industriel, scientifique, militaire ou domestique ».
Meta-learning (computer science)Meta learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.
BoostingLe boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.
Échantillonnage de GibbsL' est une méthode MCMC. Étant donné une distribution de probabilité sur un univers , cet algorithme définit une chaîne de Markov dont la distribution stationnaire est . Il permet ainsi de tirer aléatoirement un élément de selon la loi (on parle d'échantillonnage). Comme pour toutes les méthodes de Monte-Carlo à chaîne de Markov, on se place dans un espace vectoriel Ɛ de dimension finie n ; on veut générer aléatoirement N vecteurs x(i) suivant une distribution de probabilité π ; pour simplifier le problème, on détermine une distribution qx(i) permettant de générer aléatoirement x(i + 1) à partir de x(i).