In the theory of stochastic processes in discrete time, a part of the mathematical theory of probability, the Doob decomposition theorem gives a unique decomposition of every adapted and integrable stochastic process as the sum of a martingale and a predictable process (or "drift") starting at zero. The theorem was proved by and is named for Joseph L. Doob. The analogous theorem in the continuous-time case is the Doob–Meyer decomposition theorem. Let be a probability space, I = {0, 1, 2, ..., N} with or a finite or an infinite index set, a filtration of , and X = (Xn)n∈I an adapted stochastic process with E[Xn] < ∞ for all n ∈ I. Then there exist a martingale M = (Mn)n∈I and an integrable predictable process A = (An)n∈I starting with A0 = 0 such that Xn = Mn + An for every n ∈ I. Here predictable means that An is -measurable for every n ∈ I \ {0}. This decomposition is almost surely unique. The theorem is valid word by word also for stochastic processes X taking values in the d-dimensional Euclidean space or the complex vector space . This follows from the one-dimensional version by considering the components individually. Using conditional expectations, define the processes A and M, for every n ∈ I, explicitly by and where the sums for n = 0 are empty and defined as zero. Here A adds up the expected increments of X, and M adds up the surprises, i.e., the part of every Xk that is not known one time step before. Due to these definitions, An+1 (if n + 1 ∈ I) and Mn are Fn-measurable because the process X is adapted, E[An] < ∞ and E[Mn] < ∞ because the process X is integrable, and the decomposition Xn = Mn + An is valid for every n ∈ I. The martingale property a.s. also follows from the above definition (), for every n ∈ I \ {0}. To prove uniqueness, let X = M + A be an additional decomposition. Then the process Y := M − M = A − A is a martingale, implying that a.s., and also predictable, implying that a.s. for any n ∈ I \ {0}.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.