Planetary coordinate systemA planetary coordinate system (also referred to as planetographic, planetodetic, or planetocentric) is a generalization of the geographic, geodetic, and the geocentric coordinate systems for planets other than Earth. Similar coordinate systems are defined for other solid celestial bodies, such as in the selenographic coordinates for the Moon. The coordinate systems for almost all of the solid bodies in the Solar System were established by Merton E.
Géodésievignette|Archives géodésiques de Munich, avec au premier plan une planche lithographique concernant les anciens Pays-Bas (région de polders où il était particulièrement important de connaître l'altitude des terres conquises sur la mer souvent situées sous le niveau marin). vignette|Exemple de « point géodésique » de référence marqué par un pilier et daté de 1855, à Ostende sur le littoral de Belgique.
Latitudelang=fr|thumb|300px|right|Illustrations des principaux parallèles. La latitude est une coordonnée géographique représentée par une valeur angulaire, expression de la position d'un point sur Terre (ou sur une autre planète), au nord ou au sud de l'équateur qui est le plan de référence. La latitude est une mesure angulaire ; elle varie entre la valeur 0° à l'équateur et 90° aux pôles. La latitude est utilisée en combinaison avec la longitude pour indiquer la position précise d'un élément sur Terre.
GéotagUn géotag est un marqueur (« tag », en anglais) à caractère géographique inséré dans des fichiers audio ou raster dans champs (JPEG, , ), IPTC (JPEG/), XMP (très nombreux formats). Le terme en français est « balise de géolocalisation ». Cette balise peut notamment contenir : des données GPS ou GNSS (coordonnées latitude et longitude, une altitude) la direction de vue (boussole) des informations saisies par l'utilisateur : lieux de saisie, code postal...
EllipsoïdeEn mathématiques, et plus précisément en géométrie euclidienne, un ellipsoïde est une surface du second degré de l'espace euclidien à trois dimensions. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de point à l'infini. L'ellipsoïde admet un centre et au moins trois plans de symétrie. L'intersection d'un ellipsoïde avec un plan est une ellipse, un point ou l'ensemble vide.
Ellipsoïde de révolutionEn mathématiques, un ellipsoïde de révolution, ou sphéroïde, est une surface de révolution obtenue par rotation dans l'espace d'une ellipse autour de l'un de ses axes de symétrie. Comme tout ellipsoïde, il s'agit d'une surface quadrique, c'est-à-dire qu'elle est décrite par une équation de degré 2 en chaque coordonnée dans un repère cartésien. L'expression peut aussi parfois désigner le volume borné délimité par cette surface, notamment pour décrire des objets physiques tels que la Terre ou des noyaux atomiques.