String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory. In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space.
The principal advantages of the formalism are that it allows the computation of off-shell amplitudes and, when a classical action is available, gives non-perturbative information that cannot be seen directly from the standard genus expansion of string scattering. In particular, following the work of Ashoke Sen, it has been useful in the study of tachyon condensation on unstable D-branes. It has also had applications to topological string theory, non-commutative geometry, and strings in low dimensions.
String field theories come in a number of varieties depending on which type of string is second quantized: Open string field theories describe the scattering of open strings, closed string field theories describe closed strings, while open-closed string field theories include both open and closed strings.
In addition, depending on the method used to fix the worldsheet diffeomorphisms and conformal transformations in the original free string theory, the resulting string field theories can be very different. Using light cone gauge, yields light-cone string field theories whereas using BRST quantization, one finds covariant string field theories.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
The goal of this class is to teach how to look at two-dimensional field theories, how to analyse them, how to put structures on them. In the end, the student should have a good picture into what we un
En théorie des cordes, une D-brane est une brane sur laquelle sont fixées les extrémités des cordes ouvertes qui sont à l'origine de la matière qu'elle contient. Le D de D-brane, vient de Dirichlet, car le fait que les bouts de la corde ne peuvent sortir de la brane s'appelle la condition de Dirichlet. Selon ce modèle, les propriétés d'une corde (mode vibratoire, taille ; particule engendrée) sont uniquement caractérisées par ses extrémités et les bouts d'une corde ne peuvent sortir de la D-brane sur lesquels ils se trouvent.
En physique fondamentale, la théorie des cordes est un cadre théorique dans lequel les particules ponctuelles de la physique des particules sont représentées par des objets unidimensionnels appelés cordes. La théorie décrit comment ces cordes se propagent dans l'espace et interagissent les unes avec les autres. Sur des échelles de distance supérieures à l'échelle de la corde, cette dernière ressemble à une particule ordinaire, avec ses propriétés de masse, de charge et autres, déterminées par l'état vibratoire de la corde.
Explore les motivations et les applications de la supersymétrie, y compris la théorie des cordes et les symétries de saveur, aboutissant au théorème de Coleman-Mandula.
We use the S-matrix bootstrap to carve out the space of unitary, crossing symmetric and supersymmetric graviton scattering amplitudes in ten dimensions. We focus on the leading Wilson coefficient a controlling the leading correction to maximal supergravity ...
We use the S-matrix bootstrap to carve out the space of unitary, analytic, crossing symmetric and supersymmetric graviton scattering amplitudes in nine, ten and eleven dimensions. We extend and improve the numerical methods of our previous work in ten dime ...
SPRINGER2023
Conformal field theories (CFTs) play a very significant role in modern physics, appearing in such diverse fields as particle physics, condensed matter and statistical physics and in quantum gravity both as the string worldsheet theory and through the AdS/C ...