Interaction électrofaibleL’interaction électrofaible, aussi appelée force électrofaible, est la description unifiée de deux des quatre interactions fondamentales de l'univers, à savoir l'électromagnétisme (appelé électrodynamique quantique dans sa version quantique) et l'interaction faible. Ces deux forces paraissent pourtant très différentes aux échelles d'énergie atomique, et même nucléaire : la force électromagnétique est dite de portée infinie car on peut l'observer aisément à l'échelle macroscopique tandis que la force faible a une influence uniquement à l'échelle microscopique, au niveau du noyau atomique.
HertzLe hertz (symbole : Hz) est l’unité dérivée de fréquence du Système international (SI). Un hertz est la mesure de la fréquence de répétition d'un événement qui se répète une fois par seconde (s ou ). Le hertz, de symbole Hz (du nom physicien Heinrich Hertz), est l'unité de mesure de la fréquence. Elle est reliée à la vitesse (v) et à la longueur d'onde (λ) par la relation : d'où : et et à la période par : Une analyse dimensionnelle permet d'observer que le hertz correspond à des s.
Électromagnétismevignette|Globe plasma 60e. Lélectromagnétisme, aussi appelé interaction électromagnétique, est la branche de la physique qui étudie les interactions entre particules chargées électriquement, qu'elles soient au repos ou en mouvement, et plus généralement les effets de l'électricité, en utilisant la notion de champ électromagnétique. Il est d'ailleurs possible de définir l'électromagnétisme comme l'étude du champ électromagnétique et de son interaction avec les particules chargées.
Quantité de mouvementEn physique, la quantité de mouvement est le produit de la masse par le vecteur vitesse d'un corps matériel supposé ponctuel. Il s'agit donc d'une grandeur vectorielle, définie par , qui dépend du référentiel d'étude. Par additivité, il est possible de définir la quantité de mouvement d'un corps non ponctuel (ou système matériel), dont il est possible de démontrer qu'elle est égale à la quantité de mouvement de son centre d'inertie affecté de la masse totale du système, soit (C étant le centre d'inertie du système).
Double-slit experimentIn modern physics, the double-slit experiment demonstrates that light and matter can satisfy the seemingly-incongruous classical definitions for both waves and particles, which is considered evidence for the fundamentally probabilistic nature of quantum mechanics. This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. At that time it was thought that light consisted of either waves or particles.
Atomeredresse=1.25|vignette|Représentation d'un atome d' avec, apparaissant rosé au centre, le noyau atomique et, en dégradé de gris tout autour, le nuage électronique. Le noyau d', agrandi à droite, est formé de deux protons et de deux neutrons. redresse=1.25|vignette|Atomes de carbone à la surface de graphite observés par microscope à effet tunnel. Un atome est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec un autre. Les atomes sont les constituants élémentaires de toutes les substances solides, liquides ou gazeuses.
Eugene WignerEugene Paul Wigner (en hongrois Wigner Jenő Pál, prononcé ; – ) est un physicien théoricien hongrois naturalisé américain. En 1963, Wigner, Maria Goeppert-Mayer et Hans Daniel Jensen partagèrent le prix Nobel de physique pour leur travail sur l'explication de la structure du noyau atomique et son développement de la théorie de mécanique quantique concernant la nature du proton et du neutron. vignette|gauche|Werner Heisenberg et Eugene Wigner en 1928.
Modèle de BohrLe modèle de Bohr est une théorie obsolète dans le domaine de la physique/chimie, cherchant à comprendre la constitution d'un atome, et plus particulièrement celui de l'hydrogène et des ions hydrogénoïdes (ions ne possédant qu'un seul électron). Élaborée par Niels Bohr en 1913, cette théorie établie sur le modèle planétaire de Rutherford rencontra un succès immédiat car elle expliquait de manière simple les raies spectrales des éléments hydrogénés tout en effectuant un rapprochement entre les premiers modèles de l'atome et la théorie des quanta.
Physique atomiqueLa physique atomique est le champ de la physique qui étudie les atomes en tant que systèmes isolés qui comprennent les électrons et le noyau atomique. Elle se concentre essentiellement sur l'arrangement des électrons autour du noyau et sur la façon dont celui-ci est modifié. Cette définition englobe tant les ions que les atomes électriquement neutres. Puisque « atomique » et « nucléaire » sont utilisés de façon synonyme dans le langage courant, la physique atomique est souvent confondue avec la physique nucléaire.
Diffractionthumb|Phénomène d'interférences dû à la diffraction d'une onde à travers deux ouvertures. La diffraction est le comportement des ondes lorsqu'elles rencontrent un obstacle ou une ouverture ; le phénomène peut être interprété par la diffusion d’une onde par les points de l'objet. La diffraction se manifeste par des phénomènes d'interférence. La diffraction s’observe avec la lumière, mais de manière générale avec toutes les ondes : le son, les vagues, les ondes radio, Elle permet de mettre en évidence le caractère ondulatoire d'un phénomène et même de corps matériels tels que des électrons, neutrons, atomes froids.