Cohomologie des faisceauxLes groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Dualité de PoincaréEn mathématiques, le théorème de de Poincaré est un résultat de base sur la structure des groupes d'homologie et cohomologie des variétés, selon lequel, si M est une variété « fermée » (i.e. compacte et sans bord) orientée de dimension n, le k-ième groupe de cohomologie de M est isomorphe à son (n – k)-ième groupe d'homologie, pour tout entier naturel k ≤ n : La dualité de Poincaré a lieu quel que soit l'anneau de coefficients, dès qu'on a choisi une orientation relativement à cet anneau ; en particulier, puisque toute variété a une unique orientation mod 2, la dualité est vraie mod 2 sans hypothèse d'orientation.
Schéma noethérienEn géométrie algébrique, les schémas noethériens sont aux schémas ce que les anneaux noethériens sont aux anneaux commutatifs. Ce sont les schémas qui possèdent un certain nombre de propriétés de finitude. De nombreux résultats fondamentaux en géométrie algébrique sont montrés dans le cadre des schémas noethériens. Il est généralement considéré comme raisonnable de travailler dans la catégorie des schémas noethériens. Un schéma affine Spec A est noethérien si A est un anneau noethérien.
Cohomologie de De RhamEn mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham. Le affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière à coefficients réels, est bijectif.
K3 (géométrie)En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .