En mathématiques, le théorème de de Poincaré est un résultat de base sur la structure des groupes d'homologie et cohomologie des variétés, selon lequel, si M est une variété « fermée » (i.e. compacte et sans bord) orientée de dimension n, le k-ième groupe de cohomologie de M est isomorphe à son (n – k)-ième groupe d'homologie, pour tout entier naturel k ≤ n :
La dualité de Poincaré a lieu quel que soit l'anneau de coefficients, dès qu'on a choisi une orientation relativement à cet anneau ; en particulier, puisque toute variété a une unique orientation mod 2, la dualité est vraie mod 2 sans hypothèse d'orientation.
Une forme de dualité de Poincaré a d'abord été énoncée sans démonstration par Henri Poincaré en 1893, par rapport aux nombres de Betti : les k-ième et (n – k)-ième nombres de Betti d'une n-variété fermée orientable sont égaux. La notion de cohomologie ne serait clarifiée qu'environ 40 ans plus tard. Dans son article Analysis Situs de 1895, Poincaré essaya de démontrer le théorème en utilisant la théorie topologique de l', qu'il avait inventée. La critique de son travail par Poul Heegaard le fit réaliser que sa preuve était irrémédiablement fausse. Dans les deux premiers compléments d'Analysis Situs, Poincaré donna une autre démonstration, en matière de triangulations duales.
La dualité de Poincaré ne prit sa forme moderne qu'à la naissance de la cohomologie, dans les années 1930, lorsqu'Eduard Čech et Hassler Whitney inventèrent les cup- et cap-produits et formulèrent cette dualité en ces termes nouveaux.
L'énoncé moderne du théorème de dualité de Poincaré est en termes d'homologie et de cohomologie : si M est une n-variété fermée orientée alors, pour tout entier k, il existe un isomorphisme canonique de son k-ième groupe de cohomologie H(M) dans son (n – k)-ième groupe d'homologie H(M). (Ici, l'homologie et la cohomologie sont prises à coefficients dans l'anneau des entiers, mais le même théorème vaut pour tout anneau de coefficients.) Cet isomorphisme est l'application de cap-produit par la de M correspondant à l'orientation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, et particulièrement en topologie géométrique, la chirurgie est une technique, introduite en 1961 par John Milnor, permettant de construire une variété à partir d'une autre de manière « contrôlée ». On parle de chirurgie parce que cela consiste à « couper » une partie de la première variété et à la remplacer par une partie d'une autre variété, en identifiant les frontières ; ces transformations sont étroitement liées à la notion de décomposition en anses.
En mathématiques, et plus précisément en topologie algébrique, les nombres de Betti sont des invariants topologiques, c'est-à-dire qu'ils aident à distinguer différents espaces topologiques. Ils forment une suite dont chaque terme est un entier naturel ou +∞. Pour les espaces « raisonnables » comme les variétés compactes et les complexes simpliciaux ou CW-complexes finis, ils sont tous finis, et nuls à partir d'un certain rang (au-delà de la dimension de l'espace). Henri Poincaré les a nommés ainsi en l'honneur d'Enrico Betti.
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, and topological algebraic geometry.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
We construct a spectral sequence converging to the homology of the ordered configuration spaces of a product of parallelizable manifolds. To identify the second page of this spectral sequence, we introduce a version of the Boardman-Vogt tensor product for ...
Since the birth of Information Theory, researchers have defined and exploited various information measures, as well as endowed them with operational meanings. Some were born as a "solution to a problem", like Shannon's Entropy and Mutual Information. Other ...