Concept

Produit vectoriel en dimension 7

Résumé
En mathématiques, et plus précisément en algèbre linéaire, le produit vectoriel en dimension 7 est une loi de composition interne d'un espace euclidien à 7 dimensions, ayant certaines propriétés du produit vectoriel usuel (en dimension 3) ; on démontre d'ailleurs que de telles lois n'existent qu'en dimensions trois et sept. Les principes sous-jacents à la construction du produit vectoriel en dimension 7 seront présentés dans la section suivante. Le premier exemple historique d'un tel produit vectoriel est donné dans la table ci-dessous, utilisant e1 à e7 comme vecteurs de base. Cette table est une des 480 tables de multiplication indépendantes telles que chaque vecteur unitaire apparaisse une fois dans chaque ligne et dans chaque colonne. Ainsi, chaque vecteur apparait six fois dans la table, trois fois avec un signe + et trois fois avec un signe - à cause de l'antisymétrie autour des zéros de la diagonale. Par exemple, e1 = e2 × e3 =e4 × e5 = e7 × e6, et les entrées négatives correspondent aux produits vectoriels dans l'ordre opposé : -e1 = e3 × e2 =... La table donne les valeurs du produit du vecteur de gauche par le vecteur du haut (dans cet ordre) ; certaines entrées sont présentées sur fond gris pour mieux visualiser l'antisymétrie. On peut la résumer par la relation où est un tenseur totalement antisymétrique, valant +1 lorsque ijk = 123, 145, 176, 246, 257, 347, 365. En isolant les facteurs amenant au vecteur unité e1, par exemple, on obtient la formule pour la première composante de x × y, c'est-à-dire que Le coin 3 × 3 en haut à gauche de la table correspond à la table du produit vectoriel usuel en 3 dimensions. On peut aussi remarquer que l'orthogonalité de x×y avec x et y est une contrainte supplémentaire sur cette table. Cependant, en raison du grand nombre de tables de multiplication possibles, les résultats généraux concernant le produit vectoriel se démontrent plus aisément dans une formulation n'utilisant pas les coordonnées, comme on le verra ci-dessous.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.