Résumé
A dissipative system is a thermodynamically open system which is operating out of, and often far from, thermodynamic equilibrium in an environment with which it exchanges energy and matter. A tornado may be thought of as a dissipative system. Dissipative systems stand in contrast to conservative systems. A dissipative structure is a dissipative system that has a dynamical regime that is in some sense in a reproducible steady state. This reproducible steady state may be reached by natural evolution of the system, by artifice, or by a combination of these two. A dissipative structure is characterized by the spontaneous appearance of symmetry breaking (anisotropy) and the formation of complex, sometimes chaotic, structures where interacting particles exhibit long range correlations. Examples in everyday life include convection, turbulent flow, cyclones, hurricanes and living organisms. Less common examples include lasers, Bénard cells, droplet cluster, and the Belousov–Zhabotinsky reaction. One way of mathematically modeling a dissipative system is given in the article on wandering sets: it involves the action of a group on a measurable set. Dissipative systems can also be used as a tool to study economic systems and complex systems. For example, a dissipative system involving self-assembly of nanowires has been used as a model to understand the relationship between entropy generation and the robustness of biological systems. The Hopf decomposition states that dynamical systems can be decomposed into a conservative and a dissipative part; more precisely, it states that every measure space with a non-singular transformation can be decomposed into an invariant conservative set and an invariant dissipative set. Russian-Belgian physical chemist Ilya Prigogine, who coined the term dissipative structure, received the Nobel Prize in Chemistry in 1977 for his pioneering work on these structures, which have dynamical regimes that can be regarded as thermodynamic steady states, and sometimes at least can be described by suitable extremal principles in non-equilibrium thermodynamics.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.