Changement de base (algèbre linéaire)En mathématiques, plus précisément en algèbre linéaire, une matrice de passage (ou encore matrice de changement de base) permet d'écrire des formules de changement de base pour les représentations matricielles des vecteurs, des applications linéaires et des formes bilinéaires. Soient K un corps commutatif, E un K-espace vectoriel de dimension finie n, et B, B' deux bases de E. Pour des raisons mnémotechniques, on qualifie B' de nouvelle base, B d'ancienne base.
Square matrixIn mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).