Prisme triangulaireEn géométrie, un prisme triangulaire ou prisme à trois côtés est un polyèdre fait à partir d'une base triangulaire, une copie translatée et 3 faces joignant les côtés correspondants. Si les côtés sont des carrés, il est qualifié de polyèdre uniforme. D'une manière équivalente, c'est un pentaèdre dont deux faces sont parallèles, tandis que les normales aux surfaces des trois autres sont dans le même plan (qui n'est pas nécessairement parallèle aux plans des bases). Ces trois faces sont des parallélogrammes.
Truncated tesseractIn geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the truncated 16-cell. The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra. Truncated tesseract (Norman W. Johnson) Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers) The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length.
Uniform polytopeIn geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vertex-transitive even-sided polygons that alternate two different lengths of edges). This is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures (star polygons) are allowed, which greatly expand the possible solutions.
4-polytope uniformethumb|upright=1.5|alt=Représentation du 120-cellules rectifié selon son diagramme de Schlegel|Diagramme de Schlegel du 120-cellules rectifié. Un 4-polytope uniforme est, en géométrie, un 4-polytope isogonal dont les cellules sont des polyèdres uniformes. Il s'agit de l'équivalent de ces derniers en dimension 4.
Prisme hexagonalthumb|Un prisme hexagonal. En géométrie, le prisme hexagonal est le quatrième dans l'ensemble infini des prismes formés par des côtés carrés et deux faces hexagonales régulières. Il possède 8 faces, 12 sommets et 18 arêtes. C'est un octaèdre. Néanmoins, le terme octaèdre est principalement utilisé avec le terme « régulier » ou implicitement, par conséquent il ne signifie pas un prisme hexagonal ; dans le sens général, le terme octaèdre, n'est guère utilisé parce qu'il existe différents types qui n'ont pas grand-chose en commun excepté le nombre de faces.
Coxeter notationIn geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram.
Coupole (géométrie)En géométrie, une coupole est un solide formé en joignant deux polygones, un (la base) avec deux fois autant d'arêtes que l'autre, par une bande alternée de triangles et de rectangles. Si les triangles sont équilatéraux et les rectangles sont carrés, et que la base et sa face opposée sont des polygones réguliers, alors la coupole est dite « régulière ». Les coupoles hexagonales, octogonales et décagonales sont des solides de Johnson, et peuvent être formées en prenant des sections du cuboctaèdre, du petit rhombicuboctaèdre et du petit rhombicosidodécaèdre, respectivement.