Un prismatoïde est un polyèdre dont tous les sommets sont placés dans deux plans parallèles. Dans certaines circonstances, il est appelé prismoïde (si les deux plans ont le même nombre d'éléments).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie des solides, un hexaèdre est un polyèdre à six faces. Il existe un hexaèdre régulier : le cube. Le terme « hexaèdre » vient du bas latin hexahedrum, lui-même issu du grec ancien (« à six faces »). Il n'existe qu'un seul hexaèdre régulier : le cube. Il existe cependant deux autres hexaèdres semi-réguliers dont toutes les arêtes ont même longueur : le double tetraèdre en forme de diamant, appelé diamant triangulaire et la pyramide à base pentagonale, appelée pyramide pentagonale.
Un prisme est un solide géométrique délimité par deux polygones, appelés les bases du prisme, images l'un de l'autre par une translation. Ces bases sont reliées entre elles par des parallélogrammes. Quand ces parallélogrammes sont des rectangles, on dit que le prisme est droit. En géométrie affine, un prisme est un cas particulier de polyèdre. C'est un cylindre dont la base est polygonale. vignette|Prisme triangulaire. Une droite (d) de direction constante se déplaçant le long d'un polygone (p) décrit une surface appelée surface prismatique de polygone directeur (p) et de génératrice (d).
In geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube". A cuboid is like a cube in the sense that by adjusting the lengths of the edges or the angles between faces a cuboid can be transformed into a cube. In mathematical language a cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. A special case of a cuboid is a rectangular cuboid, with six rectangles as faces. Its adjacent faces meet at right angles.
Couvre le calcul intégral multivariable, y compris les cuboïdes rectangulaires, les subdivisions, les sommes du Douboux, le théorème de Fubini et l'intégration sur des ensembles délimités.
Déplacez-vous en calcul intégral multivariable, couvrant des sujets tels que le calcul du volume et la recherche d'extrema sous les contraintes.
Explore les propriétés des déterminants, les critères d'inversibilité et les interprétations géométriques des matrices.