In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy (rigidly moved without rotation) of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.
Like many basic geometric terms, the word prism () was first used in Euclid's Elements. Euclid defined the term in Book XI as “a solid figure contained by two opposite, equal and parallel planes, while the rest are parallelograms”. However, this definition has been criticized for not being specific enough in relation to the nature of the bases, which caused confusion among later geometry writers.
An oblique prism is a prism in which the joining edges and faces are not perpendicular to the base faces.
Example: a parallelepiped is an oblique prism whose base is a parallelogram, or equivalently a polyhedron with six parallelogram faces.
A right prism is a prism in which the joining edges and faces are perpendicular to the base faces. This applies if and only if all the joining faces are rectangular.
The dual of a right n-prism is a right n-bipyramid.
A right prism (with rectangular sides) with regular n-gon bases has Schläfli symbol { }×{n}. It approaches a cylinder as n approaches infinity.
A right rectangular prism (with a rectangular base) is also called a cuboid, or informally a rectangular box. A right rectangular prism has Schläfli symbol { }×{ }×{ }.
A right square prism (with a square base) is also called a square cuboid, or informally a square box.
Note: some texts may apply the term rectangular prism or square prism to both a right rectangular-based prism and a right square-based prism.
A regular prism is a prism with regular bases.
A uniform prism or semiregular prism is a right prism with regular bases and all edges of the same length.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube". A cuboid is like a cube in the sense that by adjusting the lengths of the edges or the angles between faces a cuboid can be transformed into a cube. In mathematical language a cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. A special case of a cuboid is a rectangular cuboid, with six rectangles as faces. Its adjacent faces meet at right angles.
Un prismatoïde est un polyèdre dont tous les sommets sont placés dans deux plans parallèles. Dans certaines circonstances, il est appelé prismoïde (si les deux plans ont le même nombre d'éléments). Les familles de prismatoïdes incluent : Les pyramides, où un plan contient un seul point; Les cales, où un plan contient seulement deux points; Les prismes, où les polygones dans chaque plan sont congrus et joints par des parallélogrammes ; Les antiprismes, où les polygones dans chaque plan sont congrus et joint
En mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
We find an optimal upper bound on the volume of the John ellipsoid of a k-dimensional section of the n-dimensional cube, and an optimal lower bound on the volume of the Lowner ellipsoid of a projection of the n-dimensional cross-polytope onto a k-dimension ...
For sequences of warped product metrics on a 3-torus satisfying the scalar curvature bound Rj = -1j, uniform upper volume and diameter bounds, and a uniform lower area bound on the smallest minimal surface, we find a subsequence which converges in both the ...
We study the behavior of solutions to the incompressible 2d Euler equations near two canonical shear flows with critical points, the Kolmogorov and Poiseuille flows, with consequences for the associated Navier-Stokes problems. We exhibit a large family of ...