Mouvement képlérienEn astronomie, plus précisément en mécanique céleste, le mouvement képlérien correspond à une description du mouvement d'un astre par rapport à un autre respectant les trois lois de Kepler. Pour cela il faut que l'interaction entre les deux astres puisse être considérée comme purement newtonienne, c'est-à-dire qu'elle varie en raison inverse du carré de leur distance, et que l'influence de tous les autres astres soit négligée.
Problème à deux corpsLe problème à deux corps est un modèle théorique important en mécanique, qu'elle soit classique ou quantique, dans lequel sont étudiés les mouvements de deux corps assimilés à des points matériels en interaction mutuelle (conservative), le système global étant considéré comme isolé. Dans cet article, seul sera abordé le problème à deux corps en mécanique classique (voir par exemple l'article atome d'hydrogène pour un exemple en mécanique quantique), d'abord dans le cas général d'un potentiel attractif, puis dans le cas particulier très important où les deux corps sont en interaction gravitationnelle, ou mouvement képlérien, lequel est un sujet important de la mécanique céleste.
Radial trajectoryIn astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line. There are three types of radial trajectories (orbits). Radial elliptic trajectory: an orbit corresponding to the part of a degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. The relative speed of the two objects is less than the escape velocity.
Théorème de Bertrandvignette|Joseph Louis François Bertrand (1822-1900) Le théorème de Bertrand est un résultat de mécanique, démontré en 1873 par le mathématicien Joseph Bertrand. Il établit que dans un mouvement à force centrale, seules les lois de force de Hooke (en –k OM, qui produit une ellipse où péricentre P et apocentre A forment un angle (POA) égal à 90°) et de Newton (en –k/ru, qui produit une ellipse où l'angle (POA) vaut 180°) produisent une trajectoire fermée (si la trajectoire est au préalable bornée), quelles que soient les conditions initiales.
Mouvement à force centraleEn mécanique du point, un mouvement à force centrale est le mouvement d'un point matériel M soumis uniquement à une force centrale, c'est-à-dire une force toujours dirigée vers le même point noté O appelé centre de force. Ce type de mouvement est une modélisation de certains phénomènes physiques : il n'est pas rigoureusement présent dans la nature, mais certains mouvements s'en rapprochent. Par exemple, on peut considérer que la Terre est soumise à une force centrale de la part du Soleil.
Mécanique célestethumb|Paramètres d'une orbite elliptique. La mécanique céleste décrit le mouvement d'objets astronomiques tels que les étoiles et planètes à l'aide de théories physiques et mathématiques. Les domaines de la physique les plus directement concernés sont la cinématique et la dynamique (classique ou relativiste). Dans l'Antiquité, on distingue la mécanique céleste de la mécanique terrestre, les deux mondes étant considérés comme étant régis par des lois complètement différentes (ici-bas, les « choses » « tombent », là-haut elles se « promènent »).
Force centraleEn mécanique classique du point matériel, un champ de forces est dit champ de force centrale, de centre O s'il vérifie . Le support de la force passe par le centre fixe O. L'étude du mouvement à force centrale fut un des premiers problèmes de mécanique résolu par Newton. Si la force centrale est conservative, elle dérive d'une énergie potentielle (scalaire), notée . Souvent la constante est choisie conventionnellement, si cela est possible, pour que .
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Lois de Keplerthumb|Johannes Kepler. En astronomie, les lois de Kepler décrivent les propriétés principales du mouvement des planètes autour du Soleil. L'éponyme des lois est l'astronome Johannes Kepler (-) qui les a établies de manière empirique à partir des observations et mesures de la position des planètes faites par Tycho Brahe, mesures qui étaient très précises pour l'époque ( de précision).
Mécanique spatialeLa mécanique spatiale, aussi dénommée astrodynamique, est, dans le domaine de l'astronomie et de l'astronautique, la science qui a trait à l'étude des mouvements. C'est une branche particulière de la mécanique céleste qui a notamment pour but de prévoir les trajectoires des objets spatiaux tels que les fusées ou les engins spatiaux y compris les manœuvres orbitales, les changements de plan d'orbite et les transferts interplanétaires.