Résumé
In astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line. There are three types of radial trajectories (orbits). Radial elliptic trajectory: an orbit corresponding to the part of a degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. The relative speed of the two objects is less than the escape velocity. This is an elliptic orbit with semi-minor axis = 0 and eccentricity = 1. Although the eccentricity is 1 this is not a parabolic orbit. If the coefficient of restitution of the two bodies is 1 (perfectly elastic) this orbit is periodic. If the coefficient of restitution is less than 1 (inelastic) this orbit is non-periodic. Radial parabolic trajectory, a non-periodic orbit where the relative speed of the two objects is always equal to the escape velocity. There are two cases: the bodies move away from each other or towards each other. Radial hyperbolic trajectory: a non-periodic orbit where the relative speed of the two objects always exceeds the escape velocity. There are two cases: the bodies move away from each other or towards each other. This is a hyperbolic orbit with semi-minor axis = 0 and eccentricity = 1. Although the eccentricity is 1 this is not a parabolic orbit. Unlike standard orbits which are classified by their orbital eccentricity, radial orbits are classified by their specific orbital energy, the constant sum of the total kinetic and potential energy, divided by the reduced mass: where x is the distance between the centers of the masses, v is the relative velocity, and is the standard gravitational parameter. Another constant is given by: For elliptic trajectories, w is positive. It is the inverse of the apoapsis distance (maximum distance). For parabolic trajectories, w is zero. For hyperbolic trajectories, w is negative, It is where is the velocity at infinite distance.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (11)
Équation de la force vive
En mécanique spatiale, l'équation de la force vive est une équation importante du mouvement de corps en orbite. C'est le résultat de la loi de conservation de l'énergie selon laquelle la somme des énergies cinétiques et potentielles est constante en tout point de l'orbite. L'équation de la force vive est définie par : où : est la vitesse relative des deux corps ; est la distance entre les deux corps ; est le demi-grand axe ; est la constante gravitationnelle ; est la masse du corps central.
Équation d'orbite
thumb|Orbite de la comète 3D/Biela. En mécanique spatiale, l'équation d'orbite définit la trajectoire du corps en orbite autour du corps central , sans spécifier la position en fonction du temps. Selon les hypothèses classiques, un corps se déplaçant sous l'influence d'une force, dirigée vers un corps central, d'une magnitude inversement proportionnelle au carré de la distance (cas de la gravité), a une orbite ayant une section conique (c'est-à-dire orbite circulaire, orbite elliptique, parabolique, hyperbolique ou trajectoire radiale) avec le corps central situé en l'un des deux foyers, selon la première loi de Kepler.
Mouvement képlérien
En astronomie, plus précisément en mécanique céleste, le mouvement képlérien correspond à une description du mouvement d'un astre par rapport à un autre respectant les trois lois de Kepler. Pour cela il faut que l'interaction entre les deux astres puisse être considérée comme purement newtonienne, c'est-à-dire qu'elle varie en raison inverse du carré de leur distance, et que l'influence de tous les autres astres soit négligée.
Afficher plus