We define and study in terms of integral Iwahoriâ Hecke algebras a new class of geometric operators acting on the Bruhat-Tits building of connected reductive groups over p-adic fields. These operators, which we call U-operators, generalize the geometric n ...
A classical result of Hasse states that the norm principle holds for finite cyclic extensions of global fields, in other words local norms are global norms. We investigate the norm principle for finite dimensional commutative kale algebras over global fiel ...
Given a topological modular functor V in the sense of Walker, we construct vector bundles Z (lambda) over bar, over (M) over bar (g,n) whose Chern characters define semi-simple cohomological field theories. This construction depends on a determinati ...
Embeddings of maximal tori in classical groups over fields of characteristic not 2 are the subject matter of several recent papers. The aim of the present paper is to give necessary and sufficient conditions for such an embedding to exist, when the base fi ...
We present a self-contained proof of the following famous extension theorem due to Carl Herz. A closed subgroup H of a locally compact group G is a set of p-synthesis in G if and only if, for every u is an element of A(p)(H) boolean AND C-00(H) and for eve ...
In this paper we study the regularized Petersson product between a holomorphic theta series associated to a positive definite binary quadratic form and a weakly holomorphic weight-one modular form with integral Fourier coefficients. In [18], we proved that ...
We apply the spectral curve topological recursion to Dubrovin's universal Landau-Ginzburg superpotential associated to a semi-simple point of any conformal Frobenius manifold. We show that under some conditions the expansion of the correlation differential ...
We use Masser's counting theorem to prove a lower bound for the canonical height in powers of elliptic curves. We also prove the Galois case of the elliptic Lehmer problem, combining Kummer theory and Masser's result with bounds on the rank and torsion of ...
For~q a prime power, the discrete logarithm problem (DLP) in~\Fq consists in finding, for any g∈Fq× and h∈⟨g⟩, an integer~x such that gx=h. We present an algorithm for computing discrete logarithm ...
Motivated by recent experimental progress in the context of ultra-cold multi-colour fermionic atoms in optical lattices, this thesis investigates the properties of the antiferromagnetic SU(N) Heisenberg models with fully antisymmetric irreducible represent ...