vignette|Radiation Tcherenkov dans le cœur de l'Advanced Test Reactor.
L'effet Tcherenkov, parfois nommé effet Vavilov-Tcherenkov, est un phénomène similaire à une onde de choc, produisant un flash de lumière lorsqu'une particule chargée se déplace dans un milieu diélectrique avec une vitesse supérieure à la vitesse de la lumière dans ce milieu (la vitesse de la lumière dans le vide étant toujours supérieure à celle de la particule).
Cet effet provoque par exemple la luminosité bleutée de l'eau entourant le cœur d'un réacteur nucléaire.
L'effet Vavilov-Tcherenkov porte le nom des physiciens russes Sergueï Vavilov et Pavel Tcherenkov. Il est souvent nommé simplement effet Tcherenkov, les travaux ayant été publiés sous le nom de Pavel Tcherenkov uniquement, et orthographié Tcherenkov (à la française), Cherenkov (à l'anglaise) ou encore « Čerenkov ». On rencontre également plus rarement l'appellation effet Mallet-Tcherenkov ou Tcherenkov-Mallet, particulièrement en radioprotection en France, le Français Lucien Mallet étant le premier à avoir travaillé sur le sujet — et contraint d'abandonner ses travaux faute de financement.
L’effet Tcherenkov était connu depuis 1910 et les travaux de Marie Curie montrant que l'eau soumise à une source radioactive produisait de la lumière. Jusqu'en 1926, l'explication admise était la fluorescence produite par des solutés. Mais entre 1926 et 1929, Lucien Mallet analysa plus profondément la question et remarqua que le spectre lumineux produit était continu, alors que la fluorescence donne un spectre discontinu.
Pour des besoins de recherche en astrophysique, T.S. van Albada et J. Borgman construisirent une source étalon basée sur cet effet, sans toutefois en déterminer quantitativement le rayonnement. En effet, les recherches en astronomie ultra-violette débutèrent dès le début des années 1960, aussi bien aux États-Unis (avec Riccardo Giacconi) qu'en France, grâce aux développements rapides des fusées et lanceurs (Aerobee, Diamant, etc.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|L'objet BL Lacertae : 0323+022 (z=0,147) vue prise par ESO NTT (filtre R). La galaxie hôte et les compagnons proches sont visibles. En astronomie, un blazar (en anglais : blazing quasi-stellar radiosource, que l'on peut traduire par « source radio éclatante quasi stellaire ») est un quasar très compact associé à un trou noir supermassif situé au centre d'un noyau actif de galaxie, très éloigné de nous.
thumb|Émission stimulée (lasers). L’émission stimulée (ou émission induite) est, en physique atomique, le processus de désexcitation d'un électron favorisé en illuminant l’atome d’une lumière ayant une longueur d’onde correspondant à l’énergie de transition entre les deux états électroniques. Ce processus, qui est la base du fonctionnement des lasers, ne peut être compris que dans le cadre de la théorie quantique des champs qui considère d’un point de vue quantique à la fois l’électron en orbite autour de l’atome ainsi que le champ électromagnétique qui interagit avec l’atome.
L'émission de positron ou désintégration β+ est un type de désintégration radioactive β dans laquelle un proton est converti en neutron, avec émission d'une particule β+ (positron) et d'un neutrino: Les protons et neutrons ne sont pas des particules élémentaires, mais sont chacun constitués de trois quarks : un proton est constitué de deux quark up de charge +2/3 et d'un quark down de charge −1/3 (uud), ce qui lui confère une charge +1 ; un neutron est constitué de deux quarks down et un quark up (udd), d'o
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
Explore l'interaction du rayonnement avec la matière, couvrant l'ionisation, l'excitation, la désexcitation, le bremsstrahlung, le rayonnement Cherenkov et le pouvoir d'arrêt.
Explore l'histoire, les applications, la science de la mesure, l'interaction radiation-matière et les forces fondamentales dans la détection des radiations.
Controlling and shaping radiation beams is fundamental for a better understanding of radiation-matter interaction and advancing experimental techniques for material characterization at high spatial resolution.In particular, the current trend in the miniatu ...
Microchannel plates fabricated from hydrogenated amorphous silicon (AMCPs) are a promising alternative to conventional lead glass microchannel plates. Their main advantages lie in their cheaper and more flexible fabrication processes, allowing for adaptabl ...
EPFL2023
,
H3K27M-mutant diffuse midline glioma (DMG) patients have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/ ...