thumb|Émission stimulée (lasers).
L’émission stimulée (ou émission induite) est, en physique atomique, le processus de désexcitation d'un électron favorisé en illuminant l’atome d’une lumière ayant une longueur d’onde correspondant à l’énergie de transition entre les deux états électroniques. Ce processus, qui est la base du fonctionnement des lasers, ne peut être compris que dans le cadre de la théorie quantique des champs qui considère d’un point de vue quantique à la fois l’électron en orbite autour de l’atome ainsi que le champ électromagnétique qui interagit avec l’atome. Dans le cas de l’émission stimulée (à l'inverse de l’émission spontanée où le photon peut être émis dans n’importe quelle direction), les deux photons (le photon incident et le photon émis) sont émis dans la même direction.
Les électrons ainsi que leur interaction avec les champs magnétiques constituent une notion importante dans la compréhension de la physique et de la chimie. D’après la vision classique, l'énergie d'un électron en orbite autour d’un noyau atomique est plus élevée pour les orbites les plus éloignées du noyau d’un atome. Cependant, les effets de la mécanique quantique forcent les électrons à prendre des positions discrètes dans les orbitales.
Ainsi, les électrons sont trouvés à des niveaux d'énergie spécifiques, comme le montre le schéma suivant :
centré|sans cadre|465x465px
Quand un électron absorbe de l'énergie, aussi bien par la lumière (photon) que par la chaleur (phonons), il reçoit de l’énergie quantique. Cependant, les transitions sont uniquement autorisées entre les niveaux d’énergies discrets tels que sur le schéma ci-dessus. Cela conduit à des lignes d’émission et d’absorption.
Lorsqu’un électron est excité depuis un niveau d’énergie faible vers un niveau plus élevé, il est rare qu’il y reste indéfiniment. Un électron excité peut se désintégrer vers un niveau d’énergie qui n’est pas occupé après une constante de temps particulière caractérisant cette transition.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction aux concepts de base de l'optique classique et moderne. Les étudiants acquièrent des outils pour comprendre et analyser les phénomènes optiques et pour pouvoir concevoir des systèmes opti
Series of lectures covering the physics of quantum heterostructures (including quantum dots), microcavities and photonic crystal cavities as well as the properties of the main light emitting devices t
The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
lien=//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Military_laser_experiment.jpg/250px-Military_laser_experiment.jpg|vignette|250x250px| Une expérience laser sur une table optique lien=//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Light_Amplification_by_Stimulated_Emission_of_Radiation.jpg/250px-Light_Amplification_by_Stimulated_Emission_of_Radiation.jpg|vignette|250x250px| Modules laser (fréquences de bas en haut : 405, 445, 520, 532, 635 et 660 nm) La science du laser ou physique du laser est une branche de l'optique qui décrit la théorie et la pratique des lasers.
L’émission spontanée désigne le phénomène par lequel un système quantique placé dans un état excité retombe nécessairement dans un état de plus basse énergie, par émission d’un photon. Contrairement à l’émission stimulée, ce phénomène se produit sans intervention extérieure. Lorsque l’excitation n’est pas due à la chaleur, on parle de luminescence. Dès 1887, le physicien allemand Heinrich Hertz parvint expérimentalement à mettre en évidence l’émission de lumière par des charges électriques.
La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
In this work, we provide the first 2D spatially resolved description of radiative detachment in MAST-U Super-X L-mode divertor plasmas. The Super-X magnetic configuration was designed to achieve reduced heat- and particle loads at the divertor target compa ...
Fluorescent probes are an indispensable tool in the realm of bioimaging technologies, providing valuable insights into the assessment of biomaterial integrity and structural properties. However, incorporating fluorophores into scaffolds made from melt elec ...
Wiley-V C H Verlag Gmbh2024
, , ,
Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy c ...