Ordered geometryOrdered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affine, Euclidean, absolute, and hyperbolic geometry (but not for projective geometry). Moritz Pasch first defined a geometry without reference to measurement in 1882. His axioms were improved upon by Peano (1889), Hilbert (1899), and Veblen (1904).
Plan affine (structure d'incidence)Dans une approche axiomatique de la géométrie, il est possible de définir le plan comme une structure d'incidence, c'est-à-dire la donnée d'objets primitifs, les points et les droites (qui sont certains ensembles de ces points) et d'une relation, dite d'incidence, entre point et droite (qui est la relation d'appartenance du point à la droite).
Configuration (géométrie)En géométrie, une configuration est la donnée de plusieurs éléments géométriques (points, droites, cercles, plans, angles, vecteurs...) munis de relations associées (appartenance ou incidence, parallélisme, orthogonalité...) Le terme est présent dans l’enseignement des mathématiques en France depuis 1990 en remplacement parfois du mot « figure » mais en distinguant plus spécifiquement le rôle des éléments. Ainsi, on peut considérer par exemple la configuration du théorème de Thalès ou la configuration de Möbius.
Hyperbolic orthogonalityIn geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity. Two lines are hyperbolic orthogonal when they are reflections of each other over the asymptote of a given hyperbola.
Skew linesIn three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more dimensions. Two lines are skew if and only if they are not coplanar. If four points are chosen at random uniformly within a unit cube, they will almost surely define a pair of skew lines.
Klein geometryIn mathematics, a Klein geometry is a type of geometry motivated by Felix Klein in his influential Erlangen program. More specifically, it is a homogeneous space X together with a transitive action on X by a Lie group G, which acts as the symmetry group of the geometry. For background and motivation see the article on the Erlangen program. A Klein geometry is a pair (G, H) where G is a Lie group and H is a closed Lie subgroup of G such that the (left) coset space G/H is connected.
Origine (mathématiques)En mathématiques, lorigine d'un espace euclidien est un point spécial, couramment noté O, utilisé comme point fixe de référence qui servira de repère pour la géométrie de l'espace environnant. Dans les problèmes physiques, le choix de l'origine est souvent arbitraire, ce qui impliquerait que le choix de n'importe quelle origine donnera la même réponse. Ceci autorise à choisir un point d'origine qui simplifie les calculs autant que possible, en utilisant notamment des propriétés avantageuses de symétrie.